scholarly journals Wind speed dependent size-resolved parameterization for the organic enrichment of sea spray

2011 ◽  
Vol 11 (4) ◽  
pp. 10525-10555 ◽  
Author(s):  
B. Gantt ◽  
N. Meskhidze ◽  
M. C. Facchini ◽  
M. Rinaldi ◽  
D. Ceburnis ◽  
...  

Abstract. For oceans to become a significant source of primary organic aerosol (POA), sea spray must be highly enriched with organics relative to the bulk seawater. We propose that organic enrichment at the air-sea interface, chemical composition of seawater, and the aerosol size are three main parameters controlling the organic mass fraction of sea spray aerosol (OMss). To test this hypothesis, we developed a new marine POA emission function based on a conceptual relationship between the organic enrichment at the air-sea interface and surface wind speed. The resulting parameterization is explored using aerosol chemical composition and surface wind speed from Atlantic and Pacific coastal stations, and satellite-derived ocean concentrations of chlorophyll-a, dissolved organic carbon, and particulate organic carbon. Of all the parameters examined, a multi-variable logistic regression revealed that the combination of 10 m wind speed and surface chlorophyll-a concentration ([Chl-a]) are the most consistent predictors of OMss. This relationship, combined the published aerosol size dependence of OMss, resulted in a new parameterization for the organic carbon fraction of sea spray. Global marine primary organic emission is investigated here by applying this newly-developed relationship to existing sea spray emission functions, satellite-derived [Chl-a], and modeled 10 meter winds. Analysis of model simulations show that global annual submicron marine organic emission associated with sea spray is estimated to be from 2.8 to 5.6 Tg C yr−1. This study provides additional evidence that marine primary organic aerosols are a globally significant source of organics in the atmosphere.


2011 ◽  
Vol 11 (1) ◽  
pp. 425-452
Author(s):  
B. Gantt ◽  
N. Meskhidze

Abstract. For oceans to become a significant source of primary organic aerosol, sea spray must be highly enriched with organics relative to the bulk seawater. We propose that organic enrichment at the air-sea interface, chemical composition of seawater, and the aerosol size are three main parameters controlling the organic fraction of sea spray aerosol (OCss). To test this hypothesis, we developed a new marine primary organic aerosol emission function based on a conceptual relationship between the organic enrichment at the air-sea interface and surface wind speed. The resulting parameterization is explored using aerosol chemical composition and surface wind speed from Atlantic and Pacific coastal stations, and satellite-derived ocean concentrations of chlorophyll-a, dissolved organic carbon, and particulate organic carbon. Of all the parameters examined, a multi-variable logistic regression revealed that the combination of 10 m wind speed and surface chlorophyll-a concentration ([Chl-a]) are the most consistent predictors of OCss. This relationship, combined with the published aerosol size dependence of OCss, resulted in a new parameterization for the organic carbon fraction of sea spray. Global marine primary organic emission is investigated here by applying this newly-developed relationship to existing sea spray emission functions, satellite-derived [Chl-a], and modeled 10 m winds. Analysis of model simulations show that global annual submicron marine organic emission associated with sea spray is estimated to be from 2.1 to 5.3 Tg C yr−1. This study provides additional evidence that marine primary organic aerosols are a globally significant source of organics in the atmosphere.



2011 ◽  
Vol 11 (16) ◽  
pp. 8777-8790 ◽  
Author(s):  
B. Gantt ◽  
N. Meskhidze ◽  
M. C. Facchini ◽  
M. Rinaldi ◽  
D. Ceburnis ◽  
...  

Abstract. For oceans to be a significant source of primary organic aerosol (POA), sea spray aerosol (SSA) must be highly enriched with organics relative to the bulk seawater. We propose that organic enrichment at the air-sea interface, chemical composition of seawater, and the aerosol size are three main parameters controlling the organic mass fraction of sea spray aerosol (OMSSA). To test this hypothesis, we developed a new marine POA emission function based on a conceptual relationship between the organic enrichment at the air-sea interface and surface wind speed. The resulting parameterization is explored using aerosol chemical composition and surface wind speed from Atlantic and Pacific coastal stations, and satellite-derived ocean concentrations of chlorophyll-a, dissolved organic carbon, and particulate organic carbon. Of all the parameters examined, a multi-variable logistic regression revealed that the combination of 10 m wind speed and surface chlorophyll-a concentration ([Chl-a]) are the most consistent predictors of OMSSA. This relationship, combined with the published aerosol size dependence of OMSSA, resulted in a new parameterization for the organic mass fraction of SSA. Global emissions of marine POA are investigated here by applying this newly-developed relationship to existing sea spray emission functions, satellite-derived [Chl-a], and modeled 10 m winds. Analysis of model simulations shows that global annual submicron marine organic emission associated with sea spray is estimated to be from 2.8 to 5.6 Tg C yr−1. This study provides additional evidence that marine primary organic aerosols are a globally significant source of organics in the atmosphere.



2014 ◽  
Vol 14 (1) ◽  
pp. 213-244
Author(s):  
K. W. Dawson ◽  
N. Meskhidze ◽  
D. Josset ◽  
S. Gassó

Abstract. Retrievals of aerosol optical depth (AOD) from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) satellite sensor require the assumption of an extinction-to-backscatter ratio, also known as the lidar ratio. This paper evaluates a new method to calculate the lidar ratio of sea spray aerosol using two independent sources: the AOD from the Synergized Optical Depth of Aerosols (SODA) algorithm and the integrated attenuated backscatter from CALIOP. With this method, the particulate lidar ratio can be derived for individual CALIOP retrievals in single aerosol layer columns over the ocean. Global analyses are carried out using CALIOP level 2, 5 km sea spray aerosol layer products and the collocated SODA nighttime data from December 2007 to December 2009. The global mean lidar ratio for sea spray aerosols was found to be 26 sr, roughly 30% higher than the current value prescribed by CALIOP standard retrieval algorithm. Data analysis also showed considerable spatiotemporal variability in the calculated lidar ratio over the remote oceans. The calculated aerosol lidar ratios are shown to be inversely related to the mean ocean surface wind speed: increase in ocean surface wind speed (U10) from 0 to >15 m s−1 reduces the mean lidar ratios for sea spray particles from 32 sr (for 015 m s−1). Such changes in the lidar ratio are expected to have a corresponding effect on the sea spray AOD. The outcomes of this study are relevant for future improvements of the SODA and CALIOP operational product and could lead to more accurate retrievals of sea spray AOD.



2014 ◽  
Vol 599-601 ◽  
pp. 1605-1609 ◽  
Author(s):  
Ming Zeng ◽  
Zhan Xie Wu ◽  
Qing Hao Meng ◽  
Jing Hai Li ◽  
Shu Gen Ma

The wind is the main factor to influence the propagation of gas in the atmosphere. Therefore, the wind signal obtained by anemometer will provide us valuable clues for searching gas leakage sources. In this paper, the Recurrence Plot (RP) and Recurrence Quantification Analysis (RQA) are applied to analyze the influence of recurrence characteristics of the wind speed time series under the condition of the same place, the same time period and with the sampling frequency of 1hz, 2hz, 4.2hz, 5hz, 8.3hz, 12.5hz and 16.7hz respectively. Research results show that when the sampling frequency is higher than 5hz, the trends of recurrence nature of different groups are basically unchanged. However, when the sampling frequency is set below 5hz, the original trend of recurrence nature is destroyed, because the recurrence characteristic curves obtained using different sampling frequencies appear cross or overlapping phenomena. The above results indicate that the anemometer will not be able to fully capture the detailed information in wind field when its sampling frequency is lower than 5hz. The recurrence characteristics analysis of the wind speed signals provides an important basis for the optimal selection of anemometer.



2020 ◽  
Vol 12 (2) ◽  
pp. 155-164
Author(s):  
He Fang ◽  
William Perrie ◽  
Gaofeng Fan ◽  
Tao Xie ◽  
Jingsong Yang


1998 ◽  
Vol 37 (24) ◽  
pp. 5550 ◽  
Author(s):  
Robert T. Menzies ◽  
David M. Tratt ◽  
William H. Hunt


2008 ◽  
Vol 25 (7) ◽  
pp. 1218-1227 ◽  
Author(s):  
Ming-Huei Chang ◽  
Ren-Chieh Lien ◽  
Yiing Jang Yang ◽  
Tswen Yung Tang ◽  
Joe Wang

Abstract Surface signatures and interior properties of large-amplitude nonlinear internal waves (NLIWs) in the South China Sea (SCS) were measured during a period of weak northeast wind (∼2 m s−1) using shipboard marine radar, an acoustic Doppler current profiler (ADCP), a conductivity–temperature–depth (CTD) profiler, and an echo sounder. In the northern SCS, large-amplitude NLIWs propagating principally westward appear at the tidal periodicity, and their magnitudes are modulated at the spring–neap tidal cycle. The surface scattering strength measured by the marine radar is positively correlated with the local wind speed when NLIWs are absent. When NLIWs approach, the surface scattering strength within the convergence zone is enhanced. The sea surface scattering induced by NLIWs is equivalent to that of a ∼6 m s−1 surface wind speed (i.e., 3 times greater than the actual surface wind speed). The horizontal spatial structure of the enhanced sea surface scattering strength predicts the horizontal spatial structure of the NLIW. The observed average half-amplitude full width of NLIWs λη/2 is 1.09 ± 0.2 km; the average half-amplitude full width of the enhanced scattering strength λI/2 is ∼0.57 λη/2. The average half-amplitude full width of the enhanced horizontal velocity convergence of NLIWs λ∂xu/2 is approximately equal to λI/2. The peak of the enhanced surface scattering leads the center of NLIWs by ∼0.46 λη/2. NLIW horizontal velocity convergence is positively correlated with the enhancement of the surface scattering strength. NLIW amplitude is positively correlated with the spatial integration of the enhancement of the surface scattering strength within the convergence zone of NLIWs. Empirical formulas are obtained for estimating the horizontal velocity convergence and the amplitude of NLIWs using radar measurements of surface scattering strength. The enhancement of the scattering strength exhibits strong asymmetry; the scattering strength observed from behind the propagating NLIW is 24% less than that observed ahead, presumably caused by the skewness and the breaking of surface waves induced by NLIWs. Above the center of NLIWs, the surface scattering strength is enhanced slightly, associated with isotropic surface waves presumably induced or modified by NLIWs. This analysis concludes that in low-wind conditions remote sensing measurements may provide useful predictions of horizontal velocity convergences, amplitudes, and spatial structures of NLIWs. Further applications and modification of the presented empirical formulas in different conditions of wind speed, surface waves, and NLIWs or with other remote sensing methods are encouraged.



2008 ◽  
Vol 5 (4) ◽  
pp. 569-572 ◽  
Author(s):  
D. K. Yang ◽  
Y. Q. Zhang ◽  
Y. Lu ◽  
Q. S. Zhang


Sign in / Sign up

Export Citation Format

Share Document