scholarly journals Seasonal observations of OH and HO<sub>2</sub> in the remote tropical marine boundary layer

2011 ◽  
Vol 11 (7) ◽  
pp. 21429-21487 ◽  
Author(s):  
S. Vaughan ◽  
T. Ingham ◽  
L. K. Whalley ◽  
D. Stone ◽  
M. J. Evans ◽  
...  

Abstract. Field measurements of the hydroxyl radical, OH, are crucial for our understanding of tropospheric chemistry. However, observations of this key atmospheric species in the tropical marine boundary layer, where the warm, humid conditions and high solar irradiance lend themselves favourably to production, are sparse. The Seasonal Oxidant Study at the Cape Verde Atmospheric Observatory in 2009 allowed, for the first time, seasonal measurements of both OH and HO2 in a clean (i.e. low NOx), tropical marine environment. It was found that concentrations of OH and HO2 were typically higher in the summer months (June, September), with maximum daytime concentrations of ~9 × 106 and 4 × 108 molecule cm−3, respectively – almost double the values in winter (February, early March). HO2 was observed to persist at ~107 molecule cm−3 through the night, but there was no strong evidence of nighttime OH, consistent with previous measurements at the site in 2007. HO2 was shown to have excellent correlations (R2 ~ 0.90) with both the photolysis rate of ozone, J(O1D), and the primary production rate of OH, P(OH), from the reaction of O1D) with water vapour. The analogous relations of OH were not so strong (R2 ~ 0.6), but the coefficients of the linear correlation with J(O1D) in this study were close to those yielded from previous works in this region, suggesting that the chemical regimes have similar impacts on the concentration of OH. Analysis of the variance of OH and HO2 across the Seasonal Oxidant Study suggested that ~70 % of the total variance could be explained by diurnal behaviour, with ~30 % of the total variance being due to changes in air mass.

2012 ◽  
Vol 12 (4) ◽  
pp. 2149-2172 ◽  
Author(s):  
S. Vaughan ◽  
T. Ingham ◽  
L. K. Whalley ◽  
D. Stone ◽  
M. J. Evans ◽  
...  

Abstract. Field measurements of the hydroxyl radical, OH, are crucial for our understanding of tropospheric chemistry. However, observations of this key atmospheric species in the tropical marine boundary layer, where the warm, humid conditions and high solar irradiance lend themselves favourably to production, are sparse. The Seasonal Oxidant Study at the Cape Verde Atmospheric Observatory in 2009 allowed, for the first time, seasonal measurements of both OH and HO2 in a clean (i.e. low NOx), tropical marine environment. It was found that concentrations of OH and HO2 were typically higher in the summer months (June, September), with maximum daytime concentrations of ~9 × 106 and 4 × 108 molecule cm−3, respectively – almost double the values in winter (late February, early March). HO2 was observed to persist at ~107 molecule cm−3 through the night, but there was no strong evidence of nighttime OH, consistent with previous measurements at the site in 2007. HO2 was shown to have excellent correlations (R2 ~ 0.90) with both the photolysis rate of ozone, J(O1D), and the primary production rate of OH, P(OH), from the reaction of O(1D) with water vapour. The analogous relations of OH were not so strong (R2 ~ 0.6), but the coefficients of the linear correlation with J(O1D) in this study were close to those yielded from previous works in this region, suggesting that the chemical regimes have similar impacts on the concentration of OH. Analysis of the variance of OH and HO2 across the Seasonal Oxidant Study suggested that ~70% of the total variance could be explained by diurnal behaviour, with ~30% of the total variance being due to changes in air mass.


2020 ◽  
Author(s):  
Susana Barbosa ◽  
Mauricio Camilo ◽  
Carlos Almeida ◽  
José Almeida ◽  
Guilherme Amaral ◽  
...  

&lt;p&gt;&lt;span&gt;The study of the electrical properties of the atmospheric marine boundary layer is important as the effect of natural radioactivity in driving near surface ionisation is significantly reduced over the ocean, and the concentration of aerosols is also typically lower than over continental areas, allowing a clearer examination of space-atmosphere interactions. Furthermore, cloud cover over the ocean is dominated by low-level clouds and most of the atmospheric charge lies near the earth surface, at low altitude cloud tops. &lt;/span&gt;&lt;/p&gt;&lt;p&gt;&lt;span&gt;The relevance of electric field observations in the marine boundary layer is enhanced by the the fact that the electrical conductivity of the ocean air is clearly linked to global atmospheric pollution and aerosol content. The increase in aerosol pollution since the original observations made in the early 20th century by the survey ship Carnegie is a pressing and timely motivation for modern measurements of the atmospheric electric field in the marine boundary layer. Project SAIL (Space-Atmosphere-Ocean Interactions in the marine boundary Layer) addresses this challenge by means of an unique monitoring campaign on board the ship-rigged sailing ship NRP Sagres during its 2020 circumnavigation expedition. &lt;/span&gt;&lt;/p&gt;&lt;p&gt;&lt;span&gt;The Portuguese Navy ship NRP Sagres departed from Lisbon on January 5th in a journey around the globe that will take 371 days. Two identical field mill sensors (CS110, Campbell Scientific) are installed &lt;/span&gt;&lt;span&gt;o&lt;/span&gt;&lt;span&gt;n the mizzen mast, one at a height of 22 m, and the other at a height of 5 meters. &lt;/span&gt;&lt;span&gt;A visibility sensor (SWS050, Biral) was also set-up on the same mast in order to have measurements of the extinction coefficient of the atmosphere and assess fair-weather conditions.&lt;/span&gt;&lt;span&gt; Further observations include gamma radiation measured with a NaI(Tl) scintillator from 475 keV to 3 MeV, cosmic radiation up to 17 MeV, and atmospheric ionisation from a cluster ion counter (Airel). The&lt;/span&gt;&lt;span&gt; 1 Hz measurements of the atmospheric electric field&lt;/span&gt;&lt;span&gt; and from all the other sensors&lt;/span&gt;&lt;span&gt; are &lt;/span&gt;&lt;span&gt;linked to the same rigorous temporal reference frame and precise positioning through kinematic GNSS observations. &lt;/span&gt;&lt;/p&gt;&lt;p&gt;&lt;span&gt;Here the first results of the SAIL project will be presented, focusing on fair-weather electric field over the Atlantic. The observations obtained in the first three sections of the circumnavigation journey, including Lisbon (Portugal) - Tenerife (Spain), from 5 to 10 January, Tenerife - Praia (Cape Verde) from 13 to 19 January, and across the Atlantic from Cape Verde to Rio de Janeiro (Brasil), from January 22nd to February 14th, will be presented and discussed.&lt;/span&gt;&lt;/p&gt;


2008 ◽  
Vol 8 (16) ◽  
pp. 4711-4728 ◽  
Author(s):  
S. R. Zorn ◽  
F. Drewnick ◽  
M. Schott ◽  
T. Hoffmann ◽  
S. Borrmann

Abstract. Measurements of the submicron fraction of the atmospheric aerosol in the marine boundary layer were performed from January to March 2007 (Southern Hemisphere summer) onboard the French research vessel Marion Dufresne in the Southern Atlantic and Indian Ocean (20° S–60° S, 70° W–60° E). We used an Aerodyne High-Resolution-Time-of-Flight AMS to characterize the chemical composition and to measure species-resolved size distributions of non-refractory aerosol components in the submicron range. Within the "standard" AMS compounds (ammonium, chloride, nitrate, sulfate, organics) "sulfate" is the dominant species in the marine boundary layer with concentrations ranging between 50 ng m−3 and 3 μg m−3. Furthermore, what is seen as "sulfate" by the AMS is likely comprised mostly of sulfuric acid. Another sulfur containing species that is produced in marine environments is methanesulfonic acid (MSA). There have been previously measurements of MSA using an Aerodyne AMS. However, due to the use of an instrument equipped with a quadrupole detector with unit mass resolution it was not possible to physically separate MSA from other contributions to the same m/z. In order to identify MSA within the HR-ToF-AMS raw data and to extract mass concentrations for MSA from the field measurements the standard high-resolution MSA fragmentation patterns for the measurement conditions during the ship campaign (e.g. vaporizer temperature) needed to be determined. To identify characteristic air masses and their source regions backwards trajectories were used and averaged concentrations for AMS standard compounds were calculated for each air mass type. Sulfate mass size distributions were measured for these periods showing a distinct difference between oceanic air masses and those from African outflow. While the peak in the mass distribution was roughly at 250 nm (vacuum aerodynamic diameter) in marine air masses, it was shifted to 470 nm in African outflow air. Correlations between the mass concentrations of sulfate, organics and MSA show a narrow correlation for MSA with sulfate/sulfuric acid coming from the ocean, but not with continental sulfate.


2017 ◽  
Vol 17 (6) ◽  
pp. 4081-4092 ◽  
Author(s):  
Chris Reed ◽  
Mathew J. Evans ◽  
Leigh R. Crilley ◽  
William J. Bloss ◽  
Tomás Sherwen ◽  
...  

Abstract. We present 2 years of NOx observations from the Cape Verde Atmospheric Observatory located in the tropical Atlantic boundary layer. We find that NOx mixing ratios peak around solar noon (at 20–30 pptV depending on season), which is counter to box model simulations that show a midday minimum due to OH conversion of NO2 to HNO3. Production of NOx via decomposition of organic nitrogen species and the photolysis of HNO3 appear insufficient to provide the observed noontime maximum. A rapid photolysis of nitrate aerosol to produce HONO and NO2, however, is able to simulate the observed diurnal cycle. This would make it the dominant source of NOx at this remote marine boundary layer site, overturning the previous paradigm according to which the transport of organic nitrogen species, such as PAN, is the dominant source. We show that observed mixing ratios (November–December 2015) of HONO at Cape Verde (∼ 3.5 pptV peak at solar noon) are consistent with this route for NOx production. Reactions between the nitrate radical and halogen hydroxides which have been postulated in the literature appear to improve the box model simulation of NOx. This rapid conversion of aerosol phase nitrate to NOx changes our perspective of the NOx cycling chemistry in the tropical marine boundary layer, suggesting a more chemically complex environment than previously thought.


2021 ◽  
Author(s):  
Leigh Crilley ◽  
Louisa Kramer ◽  
Francis Pope ◽  
Chris Reed ◽  
James Lee ◽  
...  

Abstract. Nitrous acid, HONO, is a key net photolytic precursor to OH radicals in the atmospheric boundary later. As OH is the dominant atmospheric oxidant, driving the removal of many primary pollutants and the formation of secondary species, a quantitative understanding of HONO sources is important to predict atmospheric oxidising capacity. While a number of HONO formation mechanisms have been identified, recent work has ascribed significant importance to the dark, ocean-surface mediated conversion of NO2 to HONO in the coastal marine boundary layer. In order to evaluate the role of this mechanism, here we analyse measurements of HONO and related species obtained at two contrasting coastal locations – Cape Verde (Atlantic Ocean), representative of the clean remote tropical marine boundary layer, and Weybourne (United Kingdom), representative of semi-polluted Northern European coastal waters. As expected, higher average concentrations of HONO (70 ppt) were observed in marine air for the more anthropogenically influenced Weybourne location compared to Cape Verde (HONO < 5 ppt). At both sites, the approximately constant HONO/NO2 ratio at night pointed to a low importance for the dark ocean-surface mediated conversion of NO2 into HONO, whereas the midday maximum in the HONO/NO2 ratios indicated significant contributions from photo-enhanced HONO formation mechanisms (or other sources). We obtained an upper limit to the rate coefficient of dark ocean-surface HONO-to-NO2 conversion of CHONO = 0.0011 ppb hr−1 from the Cape Verde observations; this is a factor of 5 lower than the slowest rate reported previously. These results point to significant geographical variation in the predominant HONO formation mechanisms in marine environments and indicate that caution is required when extrapolating the importance of such mechanisms from individual study locations to assess regional and/or global impacts on oxidising capacity. As a significant fraction of atmospheric processing occurs in the marine boundary layer, particularly in the tropics, better constraint of the possible ocean surface source of HONO is important for a quantitative understanding of chemical processing of primary trace gases in the global atmospheric boundary layer and associated impacts upon air pollution and climate.


2018 ◽  
Author(s):  
Lei Zhu ◽  
Daniel J. Jacob ◽  
Sebastian D. Eastham ◽  
Melissa P. Sulprizio ◽  
Xuan Wang ◽  
...  

Abstract. Bromine radicals influence global tropospheric chemistry by depleting ozone and OH, and by oxidizing elemental mercury, sulfur species, and volatile organic compounds. Observations typically indicate a 50 % depletion of sea salt aerosol (SSA) bromide relative to seawater composition, implying that SSA debromination could be the dominant global source of tropospheric bromine. However, it has been difficult to reconcile this large source with the relatively low BrO concentrations observed in the marine boundary layer (MBL). Here we present a new mechanistic description of SSA debromination in the GEOS-Chem global atmospheric chemistry model with a detailed representation of halogen (Cl, Br, and I) chemistry. We show, for the first time, observed levels of SSA debromination can be reproduced in a manner consistent with observed BrO concentrations. Bromine radical sinks from the HOBr + S(IV) heterogeneous reactions and from ocean emission of acetaldehyde are found to be critical in moderating tropospheric BrO levels. The resulting HBr is rapidly taken up by SSA and also deposited. We find that the source of bromine radicals is mostly from SSA in the MBL, but from organobromines in the free troposphere. Simulated BrO in the MBL is generally much higher in winter than in summer due to a combination of greater SSA emission and weaker radiation. Outstanding issues are the model underestimate of free tropospheric BrO, driven by the HOBr + S(IV) reactions, and uncertainty regarding HBr uptake by SSA.


2011 ◽  
Vol 11 (22) ◽  
pp. 11511-11519 ◽  
Author(s):  
D. C. Thornton ◽  
A. R. Bandy ◽  
J. G. Hudson

Abstract. During the Rain in (shallow) Cumulus over the Ocean (RICO) project simultaneous high rate sulfur dioxide (SO2) measurements and cloud condensation nuclei (CCN) spectra were made for the first time. For research flight 14 (14 January 2005) the convective boundary layer was impacted by precipitation and ship plumes for much of the midday period but not in the late afternoon. Number densities of accumulation mode aerosols (0.14 to 0.2 μm diameter) were a factor of two greater in the later period while CCN were 35% to 80% greater for aerosols that activate at supersaturations >0.1%. Linear correlations of SO2 and CCN were found for SO2 concentrations ranging from 20 to 600 parts-per-trillion (pptv). The greatest sensitivities were for SO2 and CCN that activate at supersaturations >0.1% for both clean and polluted air. In a region unaffected by pollution SO2 was linearly correlated only with CCN at >0.2% supersaturation. These correlations imply that the smallest CCN may be activated by SO2 through heterogeneous conversion. Evidence for entrainment of CCN from the cloud layer into the CBL was found.


2004 ◽  
Vol 4 (1) ◽  
pp. 19-34 ◽  
Author(s):  
J. B. Burkholder ◽  
J. Curtius ◽  
A. R. Ravishankara ◽  
E. R. Lovejoy

Abstract. Laboratory experimental results of iodine oxide nucleation are presented. Nucleation was induced following UV photolysis of CF3I or CH2I2 in the presence of excess ozone. Measurements were performed in a 70 L Teflon reactor with new particles detected using an Ultrafine Condensation Particle Counter, UCPC. The experimental results are interpreted using a coupled chemical - aerosol model to derive model parameters assuming single component homogeneous nucleation of OIO. The aerosol model results have been applied in an atmospheric box-model to interpret the possible implications of iodine oxide nucleation in the marine boundary layer. The model calculations demonstrate that IO and OIO concentrations reported in recent field measurements using long path absorption (Allan et al., 2000, 2001) are not sufficient to account for significant aerosol production either in the coastal or open ocean marine boundary layer using the mechanism presented. We demonstrate that inhomogeneous sources of iodine oxides, i.e. "hot" spots with elevated iodine species emissions, could account for the aerosol production bursts observed in the coastal region near Mace Head, Ireland.


2003 ◽  
Vol 3 (5) ◽  
pp. 4943-4988 ◽  
Author(s):  
J. B. Burkholder ◽  
J. Curtius ◽  
A. R. Ravishankara ◽  
E. R. Lovejoy

Abstract. Laboratory experimental results of iodine oxide nucleation are presented. Nucleation was induced following UV photolysis of CF3I or CH2I2 in the presence of excess ozone. Measurements were performed in a 70 L Teflon reactor with new particles detected using an Ultrafine Condensation Particle Counter, UCPC. The experimental results are interpreted using a coupled chemical – aerosol model to derive model parameters assuming single component homogeneous nucleation of OIO. The aerosol model results have been applied in an atmospheric box-model to interpret the possible implications of iodine oxide nucleation in the marine boundary layer. The model calculations demonstrate that IO and OIO concentrations reported in recent field measurements (Allan et al., 2000, 2001) are not sufficient to account for significant aerosol production either in the coastal or open ocean marine boundary layer using the mechanism presented. We demonstrate that inhomogeneous sources of iodine oxides, i.e. "hot" spots with elevated iodine species emissions, could account for the aerosol production bursts observed in the coastal region near Mace Head, Ireland.


Elem Sci Anth ◽  
2015 ◽  
Vol 3 ◽  
Author(s):  
Patrick Boylan ◽  
Detlev Helmig ◽  
Samuel Oltmans

Abstract In situ atmospheric ozone measurements aboard the R/V Ronald H. Brown during the 2008 Gas-Ex and AMMA research cruises were compared with data from four island and coastal Global Atmospheric Watch stations in the Atlantic Ocean to examine ozone transport in the marine boundary layer (MBL). Ozone measurements made at Tudor Hill, Bermuda, were subjected to continental outflow from the east coast of the United States, which resulted in elevated ozone levels above 50 ppbv. Ozone measurements at Cape Verde, Republic of Cape Verde, approached 40 ppbv in springtime and were influenced by outflow from Northern Africa. At Ragged Point, Barbados, ozone levels were ∼ 21 ppbv; back trajectories showed the source region to be the middle of the Atlantic Ocean. Ozone measurements from Ushuaia, Argentina, indicated influence from the nearby city; however, the comparison of the daily maxima ozone mole fractions measured at Ushuaia and aboard the Gas-Ex cruise revealed that these were representative of background ozone in higher latitudes of the Southern Hemisphere. Diurnal ozone cycles in the shipborne data, frequently reaching 6–7 ppbv, were larger than most previous reports from coastal or island monitoring locations and simulations based on HOx photochemistry alone. However, these data show better agreement with recent ozone modeling that included ozone-halogen chemistry. The transport time between station and ship was estimated from HYSPLIT back trajectories, and the change of ozone mole fractions during transport in the MBL was estimated. Three comparisons showed declining ozone levels; in the subtropical and tropical North Atlantic Ocean the loss of ozone was &lt; 1.5 ppbv day−1. Back trajectories at Ushuaia were too inconsistent to allow for this determination. Comparisons between ship and station measurements showed that ozone behavior and large-scale (∼ 1000 km) multi-day transport features were well retained during transport in the MBL.


Sign in / Sign up

Export Citation Format

Share Document