scholarly journals Seasonal impact of natural and anthropogenic emissions on the highest glacier of the Eastern European Alps

2011 ◽  
Vol 11 (2) ◽  
pp. 6493-6530 ◽  
Author(s):  
J. Gabrieli ◽  
L. Carturan ◽  
P. Gabrielli ◽  
C. Turetta ◽  
N. Kehrwald ◽  
...  

Abstract. In June 2009, we conducted the first extensive glaciological survey of Alto dell'Ortles, the uppermost glacier of Mt. Ortles which at 3905 meters above sea level (m a.s.l.) is the highest summit of the Eastern European Alps. We analyzed snow samples collected from a 4.5 m snow-pit at 3830 m a.s.l. Here, we present a comprehensive data set including a large suite of trace elements and ionic compounds that comprise the atmospheric depositions over the past few years. Trace element concentrations measured in snow samples are extremely low with mean concentrations at pg g−1 level. Only Al and Fe present median values of 1.8 and 3.3 ng g−1, with maximum concentrations of 21 and 25 ng g−1. The median EFc values for Be, Rb, Sr, Ba, U, Li, Al, Ca, Cr, Mn, Fe, Co, Ga and V are lower than 10 suggesting that these elements originated mainly from soil and mineral aerosol. EFc higher than 100 are reported for Zn (118), Ag (135), Bi (185), Sb (401) and Cd (514), demonstrating the predominance of non-crustal depositions and suggesting an anthropogenic origin. Our data show that the physical stratigraphy and the chemical signals of several species were well preserved in the uppermost snow of the Alto dell'Ortles glacier. A clear seasonality emerges from the data as the summer snow is more affected by anthropogenic and marine contributions while the winter aerosol flux is dominated by crustal sources. For trace elements, the largest mean EFc seasonal variations are displayed by V (with a factor of 3.8), Sb (3.3), Cu (3.3), Pb (2.9), Bi (2.8), Cd (2.1), Zn (1.9), Ni (1.8), Ag (1.8), As (1.7) and Co (1.6). The chemical data are also discussed in light of the atmospheric stability and back-trajectories analyses in order to explain the observed seasonal variability and how human activities impact the high altitude environment in the Eastern Alps. The origin and behavior of air masses as inferred from the evaluation of 48-h back-trajectories show significant seasonal differences. However, the large changes in trace elements concentrations seem to be more related to the vertical structure of the troposphere at a regional scale rather than the synoptic weather patterns.

2020 ◽  
Author(s):  
Irene Bianchi ◽  
Elmer Ruigrok ◽  
Anne Obermann ◽  
Edi Kissling

Abstract. In this work we present the application of the Global-Phase Seismic Interferometry (GloPSI) technique to a data-set recorded across the Eastern Alps with the EASI temporary seismic network (Eastern Alpine Seismic Investigation). GloPSI aims at rendering an image of the lithosphere from the waves that travel across the core before reaching the seismic stations (i.e. PKP, PKiKP, PKIKP). The technique is based on the principle that a stack of autocorrelations of transmission responses mimics the reflection response of a medium, and is used here to retrieve information about the crust-mantle boundary, such as its depth and topography. We produce images of the upper lithosphere using 64 teleseismic events. We notice that with GloPSI, we can well image the topography of the Moho in regions, where it shows a nearly planar behaviour (i.e. in the northern part of the profile, from the Bohemian massif to beneath the Northern Calcareous Alps). Below the higher crests of the Alpine chain, and the Tauern Window in particular, we cannot find evidence for a typical boundary between crust and mantle. The GloPSI results indicate the absence of an Adriatic crust made of laterally continuous layers smoothly descending southwards. On the contrary, our results confirm the observations of previous studies suggesting a structurally complex Moho topography and faulted internal Alpine crustal structure.


2011 ◽  
Vol 11 (15) ◽  
pp. 8087-8102 ◽  
Author(s):  
J. Gabrieli ◽  
L. Carturan ◽  
P. Gabrielli ◽  
N. Kehrwald ◽  
C. Turetta ◽  
...  

Abstract. In June 2009, we conducted the first extensive glaciological survey of Alto dell'Ortles, the uppermost glacier of Mt. Ortles (3905 m a.s.l.), the highest summit of the Eastern European Alps. This section of the Alps is located in a rain shadow and is characterized by the lowest precipitation rate in the entire Alpine arc. Mt. Ortles offers a unique opportunity to test deposition mechanisms of chemical species that until now were studied only in the climatically-different western sector. We analyzed snow samples collected on Alto dell'Ortles from a 4.5 m snow-pit at 3830 m a.s.l., and we determined a large suite of trace elements and ionic compounds that comprise the atmospheric deposition over the past two years. Trace element concentrations measured in snow samples are extremely low with mean concentrations at pg g−1 levels. Only Al and Fe present median values of 1.8 and 3.3 ng g−1, with maximum concentrations of 21 and 25 ng g−1. The median crustal enrichment factor (EFc) values for Be, Rb, Sr, Ba, U, Li, Al, Ca, Cr, Mn, Fe, Co, Ga and V are lower than 10 suggesting that these elements originated mainly from soil and mineral aerosol. EFc higher than 100 are reported for Zn (118), Ag (135), Bi (185), Sb (401) and Cd (514), demonstrating the predominance of non-crustal depositions and suggesting an anthropogenic origin. Our data show that the physical stratigraphy and the chemical signals of several species were well preserved in the uppermost snow of the Alto dell'Ortles glacier. A clear seasonality emerges from the data as the summer snow is more affected by anthropogenic and marine contributions while the winter aerosol flux is dominated by crustal sources. For trace elements, the largest mean EFc seasonal variations are displayed by V (with a factor of 3.8), Sb (3.3), Cu (3.3), Pb (2.9), Bi (2.8), Cd (2.1), Zn (1.9), Ni (1.8), Ag (1.8), As (1.7) and Co (1.6). When trace species ratios in local and Po Valley emissions are compared with those in Alto dell'Ortles snow, the deposition on Mt. Ortles is clearly linked with Po Valley summer emissions. Despite climatic differences between the Eastern and Western Alps, trace element ratios from Alto dell'Ortles are comparable with those obtained from high-altitude glaciers in the Western Alps, suggesting similar sources and transport processes at seasonal time scales in these two distinct areas. In particular, the large changes in trace element concentrations both in the Eastern and Western Alps appear to be more related to the regional vertical structure of the troposphere rather than the synoptic weather patterns.


2006 ◽  
Vol 6 (5) ◽  
pp. 8781-8815 ◽  
Author(s):  
P. Gabrielli ◽  
G. Cozzi ◽  
S. Torcini ◽  
P. Cescon ◽  
C. Barbante

Abstract. Trace elements concentrations were determined in shallow snow samples from 21 sites in the Italian Eastern Alps in order to identify the sources of the contaminants present in the tropospheric winter boundary layer. The collection of superficial snow layers was carried out weekly at altitudes between 1000 and 3000 m next to meteorological stations, far away from villages, roads and ski slopes. Ultra clean procedures were adopted in order to avoid contamination of the snow during the different experimental phases. Trace elements (Ag, Ba, Bi, Cd, Co, Cr, Cu, Fe, Mo, Mn, Pb, Sb, Ti, U, V and Zn) were determined by Inductively Coupled Plasma Sector Field Mass Spectrometer (ICP-SFMS). Ancillary parameters such as major ions (SO42−, NO3−, Ca2+;, Mg2+, K


2020 ◽  
Author(s):  
Paul R. Eizenhöfer ◽  
Christoph Glotzbach ◽  
Lukas Büttner ◽  
Jonas Kley ◽  
Todd A. Ehlers

<p>Many convergent orogens such as the eastern European Alps display an asymmetric doubly-vergent wedge geometry. Loci of deepest exhumation are located above the overriding retro-wedge, whereas increased fault activity occurs in the pro-wedge on the subducting plate. The main drainage divide separates steeper from more gently sloping topography on the two wedges of different critical taper. We performed apatite and zircon (U-Th)/He analyses densely spaced along the TRANSALP geophysical transect in combination with thermo-kinematic models based on cross-section balancing. Our new low temperature thermochronology data and thermo-kinematic model results underline (i) deepest levels of exhumation across the Tauern Window until the Pliocene and (ii) higher Late Neogene exhumation rates south of the Periadriatic Fault relative to the north, while seismic activity is focussed across the Southern Alps. Our proposed mantle-to-surface link positions the retro-wedge north of the Periadriatic Fault subsequent to subduction polarity reversal during continental collision. Present-day drainage divide migration trends and imaged locations of mantle-lithospheric slabs beneath TRANSALP suggest ongoing, slow slab reversal since Adriatic indentation in the Eastern Alps. </p>


2019 ◽  
Vol 11 (14) ◽  
pp. 1711 ◽  
Author(s):  
Aldo Bertone ◽  
Francesco Zucca ◽  
Carlo Marin ◽  
Claudia Notarnicola ◽  
Giovanni Cuozzo ◽  
...  

Rock glaciers are widespread periglacial landforms in mountain regions like the European Alps. Depending on their ice content, they are characterized by slow downslope displacement due to permafrost creep. These landforms are usually mapped within inventories, but understand their activity is a very difficult task, which is frequently accomplished using geomorphological field evidences, direct measurements, or remote sensing approaches. In this work, a powerful method to analyze the rock glaciers’ activity was developed exploiting the synthetic aperture radar (SAR) satellite data. In detail, the interferometric coherence estimated from Sentinel-1 data was used as key indicator of displacement, developing an unsupervised classification method to distinguish moving (i.e., characterized by detectable displacement) from no-moving (i.e., without detectable displacement) rock glaciers. The original application of interferometric coherence, estimated here using the rock glacier outlines as boundaries instead of regular kernel windows, allows describing the activity of rock glaciers at a regional-scale. The method was developed and tested over a large mountainous area located in the Eastern European Alps (South Tyrol and western part of Trentino, Italy) and takes into account all the factors that may limit the effectiveness of the coherence in describing the rock glaciers’ activity. The activity status of more than 1600 rock glaciers was classified by our method, identifying more than 290 rock glaciers as moving. The method was validated using an independent set of rock glaciers whose activity is well-known, obtaining an accuracy of 88%. Our method is replicable over any large mountainous area where rock glaciers are already mapped and makes it possible to compensate for the drawbacks of time-consuming and subjective analysis based on geomorphological evidences or other SAR approaches.


Author(s):  
Jovita PILECKA ◽  
Inga GRINFELDE ◽  
Inga STRAUPE ◽  
Oskars PURMALIS

The anthropogenic sources of air pollution such as transport, energetics, household heating and industry generate different trace element footprint. The urban planning is one of tool to reduce air pollution with trace elements. The aim of this study is to identify air pollution sources in Jelgava city using trace elements. The snow sampling were collected during January and February 2017. The January snow samples characterise average Jelgava city air pollution. However, February characterises intensive tourism impact on total air quality of Jelgava city. The snow samples were analysed using inductively coupled plasma spectrometer (ICP-OES). The data analysis consists of three stages. First, data verification and development of waste burning; burning of oil and fossil materials; wastewater treatment and utilisation of sewage sludge; transport; metal industry and fireworks typical pollution trace element data sets. Second, the cluster analysis of each data set, by developing three groups of pollution level for each pollution source. Third the results of clusters were analysed using GIS, and the areas with different air pollution risks were identified. The results show strong evidence of transport and household impact on air quality.


Author(s):  
David McCallen ◽  
Houjun Tang ◽  
Suiwen Wu ◽  
Eric Eckert ◽  
Junfei Huang ◽  
...  

Accurate understanding and quantification of the risk to critical infrastructure posed by future large earthquakes continues to be a very challenging problem. Earthquake phenomena are quite complex and traditional approaches to predicting ground motions for future earthquake events have historically been empirically based whereby measured ground motion data from historical earthquakes are homogenized into a common data set and the ground motions for future postulated earthquakes are probabilistically derived based on the historical observations. This procedure has recognized significant limitations, principally due to the fact that earthquake ground motions tend to be dictated by the particular earthquake fault rupture and geologic conditions at a given site and are thus very site-specific. Historical earthquakes recorded at different locations are often only marginally representative. There has been strong and increasing interest in utilizing large-scale, physics-based regional simulations to advance the ability to accurately predict ground motions and associated infrastructure response. However, the computational requirements for simulations at frequencies of engineering interest have proven a major barrier to employing regional scale simulations. In a U.S. Department of Energy Exascale Computing Initiative project, the EQSIM application development is underway to create a framework for fault-to-structure simulations. This framework is being prepared to exploit emerging exascale platforms in order to overcome computational limitations. This article presents the essential methodology and computational workflow employed in EQSIM to couple regional-scale geophysics models with local soil-structure models to achieve a fully integrated, complete fault-to-structure simulation framework. The computational workflow, accuracy and performance of the coupling methodology are illustrated through example fault-to-structure simulations.


Author(s):  
Guangqing Hu ◽  
Guijian Liu ◽  
Dun Wu ◽  
Wenyong Zhang ◽  
Biao Fu

AbstractBased on analysis of a large data set and supplementary sampling and analysis for hazardous trace elements in coal samples from the Huainan Coalfield, a generalized contrast-weighted scale index method was used to establish a model to evaluate the grade of coal cleanliness and its regional distribution in the main coal seam (No. 13-1) The results showed that: (1) The contents of Cr, Mn and Ni in the coal seam are relatively high and the average values are greater than 20 μg/g. The contents of Se and Hg are at a high level while most other trace elements are at normal levels. (2) The cleanliness grade of the coal seam is mainly grade III–IV, which corresponds to a relatively good-medium coal cleanliness grade. However, some parts of the seam are at grade V (relatively poor coal cleanliness). (3) Coal of relatively good cleanliness grade (grade III) is distributed mainly in the regions corresponding to the Zhuji-Dingji-Gubei coal mines and in the eastern periphery of the Panji coal mine. Coal of medium cleanliness (grade IV) is distributed mainly in the regions of the Panji-Xiejiaji and Kouzidong coalmines. Relatively poor grade coal (grade V) is distributed in the southwest regions of the coalfield and the contents of Cr, As and Hg in coal collected from the relatively poor coal cleanliness regions often exceed the regulatory standards for the maximum concentration limits.


Data in Brief ◽  
2020 ◽  
Vol 30 ◽  
pp. 105438
Author(s):  
Karina L. Lecomte ◽  
Cecilia V. Echegoyen ◽  
Paula A. Vignoni ◽  
Kateřina Kopalová ◽  
Tyler J. Kohler ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document