scholarly journals Atmospheric removal times of the aerosol-bound radionuclides <sup>137</sup>Cs and <sup>131</sup>I during the months after the Fukushima Dai-ichi nuclear power plant accident – a constraint for air quality and climate models

2012 ◽  
Vol 12 (5) ◽  
pp. 12331-12356
Author(s):  
N. I. Kristiansen ◽  
A. Stohl ◽  
G. Wotawa

Abstract. Caesium-137 (137Cs) and iodine-131 (131I) are radionuclides of particular concern during nuclear accidents, because they are emitted in large amounts and are of significant health impact. 137Cs and 131I attach to the ambient accumulation-mode (AM) aerosols and share their fate as the aerosols are removed from the atmosphere by scavenging within clouds, precipitation and dry deposition. Here, we estimate their removal times from the atmosphere using a unique high-precision global measurement data set collected over several months after the accident at the Fukushima Dai-ichi nuclear power plant in March 2011. The noble gas xenon-133 (133Xe), also released during the accident, served as a passive tracer of air mass transport for determining the removal times of 137Cs and 131I via the decrease in the measured ratios 137Cs/133Xe and 131I/133Xe over time. After correction for radioactive decay, the 137Cs/133Xe ratios reflect the removal of aerosols by wet and dry deposition, whereas the 131I/133Xe ratios are also influenced by aerosol production from gaseous 131I. We find removal times for 137Cs of 10.0–13.9 days and for 131I of 17.1–24.2 days during April and May 2011. We discuss possible caveats (e.g. late emissions, resuspension) that can affect the results, and compare the 137Cs removal times with observation-based and modeled aerosol lifetimes. Our 137Cs removal time of 10.0–13.9 days should be representative of a "background" AM aerosol well mixed in the extratropical Northern Hemisphere troposphere. It is expected that the lifetime of this vertically mixed background aerosol is longer than the lifetime of AM aerosols originating from surface sources. However, the substantial difference to the mean lifetimes of AM aerosols obtained from aerosol models, typically in the range of 3–7 days, warrants further research on the cause of this discrepancy. Too short modeled AM aerosol lifetimes would have serious implications for air quality and climate model predictions.

2012 ◽  
Vol 12 (22) ◽  
pp. 10759-10769 ◽  
Author(s):  
N. I. Kristiansen ◽  
A. Stohl ◽  
G. Wotawa

Abstract. Caesium-137 (137Cs) and iodine-131 (131I) are radionuclides of particular concern during nuclear accidents, because they are emitted in large amounts and are of significant health impact. 137Cs and 131I attach to the ambient accumulation-mode (AM) aerosols and share their fate as the aerosols are removed from the atmosphere by scavenging within clouds, precipitation and dry deposition. Here, we estimate their removal times from the atmosphere using a unique high-precision global measurement data set collected over several months after the accident at the Fukushima Dai-ichi nuclear power plant in March 2011. The noble gas xenon-133 (133Xe), also released during the accident, served as a passive tracer of air mass transport for determining the removal times of 137Cs and 131I via the decrease in the measured ratios 137Cs/133Xe and 131I/133Xe over time. After correction for radioactive decay, the 137Cs/133Xe ratios reflect the removal of aerosols by wet and dry deposition, whereas the 131I/133Xe ratios are also influenced by aerosol production from gaseous 131I. We find removal times for 137Cs of 10.0–13.9 days and for 131I of 17.1–24.2 days during April and May 2011. The removal time of 131I is longer due to the aerosol production from gaseous 131I, thus the removal time for 137Cs serves as a better estimate for aerosol lifetime. The removal time of 131I is of interest for semi-volatile species. We discuss possible caveats (e.g. late emissions, resuspension) that can affect the results, and compare the 137Cs removal times with observation-based and modeled aerosol lifetimes. Our 137Cs removal time of 10.0–13.9 days should be representative of a "background" AM aerosol well mixed in the extratropical Northern Hemisphere troposphere. It is expected that the lifetime of this vertically mixed background aerosol is longer than the lifetime of fresh AM aerosols directly emitted from surface sources. However, the substantial difference to the mean lifetimes of AM aerosols obtained from aerosol models, typically in the range of 3–7 days, warrants further research on the cause of this discrepancy. Too short modeled AM aerosol lifetimes would have serious implications for air quality and climate model predictions.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Hongyun Xie ◽  
Haixia Gu ◽  
Chao Lu ◽  
Jialin Ping

Real-time Simulation (RTS) has long been used in the nuclear power industry for operator training and engineering purposes. And, online simulation (OLS) is based on RTS and with connection to the plant information system to acquire the measurement data in real time for calibrating the simulation models and following plant operation, for the purpose of analyzing plant events and providing indicative signs of malfunctioning. OLS has been applied in certain industries to improve safety and efficiency. However, it is new to the nuclear power industry. A research project was initiated to implement OLS to assist operators in certain critical nuclear power plant (NPP) operations to avoid faulty conditions. OLS models were developed to simulate the reactor core physics and reactor/steam generator thermal hydraulics in real time, with boundary conditions acquired from plant information system, synchronized in real time. The OLS models then were running in parallel with recorded plant events to validate the models, and the results are presented.


Author(s):  
Sang-Nyung Kim ◽  
Sang-Gyu Lim

The safety injection (SI) nozzle of a 1000MWe-class Korean standard nuclear power plant (KSNP) is fitted with thermal sleeves (T/S) to alleviate thermal fatigue. Thermal sleeves in KSNP #3 & #4 in Yeonggwang (YG) & Ulchin (UC) are manufactured out of In-600 and fitted solidly without any problem, whereas KSNP #5 & #6 in the same nuclear power plants, also fitted with thermal sleeves made of In-690 for increased corrosion resistance, experienced a loosening of thermal sleeves in all reactors except KSNP YG #5-1A, resulting in significant loss of generation availability. An investigation into the cause of the loosening of the thermal sleeves only found out that the thermal sleeves were subject to severe vibration and rotation, failing to uncover the root cause and mechanism of the loosening. In an effort to identify the root cause of T/S loosening, three suspected causes were analyzed: (1) the impact force of flow on the T/S when the safety SI nozzle was in operation, (2) the differences between In-600 and In-690 in terms of physical and chemical properties (notably the thermal expansion coefficient), and (3) the positioning error after explosive expansion of the T/S as well as the asymmetric expansion of T/S. It was confirmed that none of the three suspected causes could be considered as the root cause. However, after reviewing design changes applied to the Palo Verde nuclear plant predating KSNP YG #3 & #4 to KSNP #5 & #6, it was realized that the second design modification (in terms of groove depth & material) had required an additional explosive energy by 150% in aggregate, but the amount of gunpowder and the explosive expansion method were the same as before, resulting in insufficient explosive force that led to poor thermal sleeve expansion. T/S measurement data and rubbing copies also support this conclusion. In addition, it is our judgment that the acceptance criteria applicable to T/S fitting was not strict enough, failing to single out thermal sleeves that were not expanded sufficiently. Furthermore, the T/S loosening was also attributable to lenient quality control before and after fitting the T/S that resulted in significant uncertainty. Lastly, in a flow-induced vibration test planned to account for the flow mechanism that had a direct impact upon the loosening of the thermal sleeves that were not fitted completely, it was discovered that the T/S loosening was attributable to RCS main flow. In addition, it was proven theoretically that the rotation of the T/S was induced by vibration.


2015 ◽  
Vol 14 (1) ◽  
pp. 33-39
Author(s):  
Hun Yun ◽  
Kyeongmo Hwang ◽  
Hyoseoung Lee ◽  
Seungjae Moon

2011 ◽  
Vol 11 (10) ◽  
pp. 28319-28394 ◽  
Author(s):  
A. Stohl ◽  
P. Seibert ◽  
G. Wotawa ◽  
D. Arnold ◽  
J. F. Burkhart ◽  
...  

Abstract. On 11 March 2011, an earthquake occurred about 130 km off the Pacific coast of Japan's main island Honshu, followed by a large tsunami. The resulting loss of electric power at the Fukushima Dai-ichi nuclear power plant (FD-NPP) developed into a disaster causing massive release of radioactivity into the atmosphere. In this study, we determine the emissions of two isotopes, the noble gas xenon-133 (133Xe) and the aerosol-bound caesium-137 (137Cs), which have very different release characteristics as well as behavior in the atmosphere. To determine radionuclide emissions as a function of height and time until 20 April, we made a first guess of release rates based on fuel inventories and documented accident events at the site. This first guess was subsequently improved by inverse modeling, which combined the first guess with the results of an atmospheric transport model, FLEXPART, and measurement data from several dozen stations in Japan, North America and other regions. We used both atmospheric activity concentration measurements as well as, for 137Cs, measurements of bulk deposition. Regarding 133Xe, we find a total release of 16.7 (uncertainty range 13.4–20.0) EBq, which is the largest radioactive noble gas release in history not associated with nuclear bomb testing. There is strong evidence that the first strong 133Xe release started very early, possibly immediately after the earthquake and the emergency shutdown on 11 March at 06:00 UTC. The entire noble gas inventory of reactor units 1–3 was set free into the atmosphere between 11 and 15 March 2011. For 137Cs, the inversion results give a total emission of 35.8 (23.3–50.1) PBq, or about 42% of the estimated Chernobyl emission. Our results indicate that 137Cs emissions peaked on 14–15 March but were generally high from 12 until 19 March, when they suddenly dropped by orders of magnitude exactly when spraying of water on the spent-fuel pool of unit 4 started. This indicates that emissions were not only coming from the damaged reactor cores, but also from the spent-fuel pool of unit 4 and confirms that the spraying was an effective countermeasure. We also explore the main dispersion and deposition patterns of the radioactive cloud, both regionally for Japan as well as for the entire Northern Hemisphere. While at first sight it seemed fortunate that westerly winds prevailed most of the time during the accident, a different picture emerges from our detailed analysis. Exactly during and following the period of the strongest 137Cs emissions on 14 and 15 March as well as after another period with strong emissions on 19 March, the radioactive plume was advected over Eastern Honshu Island, where precipitation deposited a large fraction of 137Cs on land surfaces. The plume was also dispersed quickly over the entire Northern Hemisphere, first reaching North America on 15 March and Europe on 22 March. In general, simulated and observed concentrations of 133Xe and 137Cs both at Japanese as well as at remote sites were in good quantitative agreement with each other. Altogether, we estimate that 6.4 TBq of 137Cs, or 19% of the total fallout until 20 April, were deposited over Japanese land areas, while most of the rest fell over the North Pacific Ocean. Only 0.7 TBq, or 2% of the total fallout were deposited on land areas other than Japan.


2014 ◽  
Vol 701-702 ◽  
pp. 219-222
Author(s):  
Chun Yang Liu ◽  
Jing Wei Zhang ◽  
Xue Feng Zheng ◽  
Xu Yan Tu

In this paper, an algorithm concerning the primitive action affordances of learning nuclear power plant maintenance robot is presented. The algorithm generates a random matching data set through a new matching method, which is utilized for the selection of object operation, with the matching rate improved by trial and error, and then the attempt number for a successful operation is reduced. In the end, simulation is conducted to verify the feasibility and correctness of the proposed algorithm.


2015 ◽  
Vol 12 (1) ◽  
pp. 127-133 ◽  
Author(s):  
H. Nakayama ◽  
T. Takemi ◽  
H. Nagai

Abstract. A significant amount of radioactive material was accidentally discharged into the atmosphere from the Fukushima Dai-ichi Nuclear Power Plant from 12 March 2011, which produced high contaminated areas over a wide region in Japan. In conducting regional-scale atmospheric dispersion simulations, the computer-based nuclear emergency response system WSPEEDI-II developed by Japan Atomic Energy Agency was used. Because this system is driven by a meso-scale meteorological (MM) model, it is difficult to reproduce small-scale wind fluctuations due to the effects of local terrain variability and buildings within a nuclear facility that are not explicitly represented in MM models. In this study, we propose a computational approach to couple an LES-based CFD model with a MM model for detailed simulations of turbulent winds with buoyancy effects under real meteorological conditions using turbulent inflow technique. Compared to the simple measurement data, especially, the 10 min averaged wind directions of the LES differ by more than 30 degrees during some period of time. However, distribution patterns of wind speeds, directions, and potential temperature are similar to the MM data. This implies that our coupling technique has potential performance to provide detailed data on contaminated area in the nuclear accidents.


2020 ◽  
Vol 12 (3) ◽  
pp. 1861-1875 ◽  
Author(s):  
Valery Kashparov ◽  
Sviatoslav Levchuk ◽  
Marina Zhurba ◽  
Valentyn Protsak ◽  
Nicholas A. Beresford ◽  
...  

Abstract. The data set “Spatial radionuclide deposition data from the 60 radial km area around the Chernobyl nuclear power plant: results from a sampling survey in 1987” is the latest in a series of data to be published by the Environmental Information Data Centre (EIDC) describing samples collected and analysed following the Chernobyl Nuclear Power Plant accident in 1986. The data result from a survey carried out by the Ukrainian Institute of Agricultural Radiology (UIAR) in April and May 1987 and includes sample site information, dose rate, radionuclide (zirconium-95, niobium-95, ruthenium-106, caesium-134, caesium-137 and cerium-144) deposition, and exchangeable (determined following 1M NH4Ac extraction of soils) caesium-134 and 137. The purpose of this paper is to describe the available data and methodology used for sample collection, sample preparation and analysis. The data will be useful in reconstructing doses to human and wildlife populations, answering the current lack of scientific consensus on the effects of radiation on wildlife in the Chernobyl Exclusion Zone and evaluating future management options for the Chernobyl-impacted areas of Ukraine and Belarus. The data and supporting documentation are freely available from the EIDC under the terms and conditions of the Open Government Licence (Kashparov et al., 2019; https://doi.org/10.5285/a408ac9d-763e-4f4c-ba72-73bc2d1f596d).


Sign in / Sign up

Export Citation Format

Share Document