scholarly journals Atmospheric removal times of the aerosol-bound radionuclides <sup>137</sup>Cs and <sup>131</sup>I measured after the Fukushima Dai-ichi nuclear accident – a constraint for air quality and climate models

2012 ◽  
Vol 12 (22) ◽  
pp. 10759-10769 ◽  
Author(s):  
N. I. Kristiansen ◽  
A. Stohl ◽  
G. Wotawa

Abstract. Caesium-137 (137Cs) and iodine-131 (131I) are radionuclides of particular concern during nuclear accidents, because they are emitted in large amounts and are of significant health impact. 137Cs and 131I attach to the ambient accumulation-mode (AM) aerosols and share their fate as the aerosols are removed from the atmosphere by scavenging within clouds, precipitation and dry deposition. Here, we estimate their removal times from the atmosphere using a unique high-precision global measurement data set collected over several months after the accident at the Fukushima Dai-ichi nuclear power plant in March 2011. The noble gas xenon-133 (133Xe), also released during the accident, served as a passive tracer of air mass transport for determining the removal times of 137Cs and 131I via the decrease in the measured ratios 137Cs/133Xe and 131I/133Xe over time. After correction for radioactive decay, the 137Cs/133Xe ratios reflect the removal of aerosols by wet and dry deposition, whereas the 131I/133Xe ratios are also influenced by aerosol production from gaseous 131I. We find removal times for 137Cs of 10.0–13.9 days and for 131I of 17.1–24.2 days during April and May 2011. The removal time of 131I is longer due to the aerosol production from gaseous 131I, thus the removal time for 137Cs serves as a better estimate for aerosol lifetime. The removal time of 131I is of interest for semi-volatile species. We discuss possible caveats (e.g. late emissions, resuspension) that can affect the results, and compare the 137Cs removal times with observation-based and modeled aerosol lifetimes. Our 137Cs removal time of 10.0–13.9 days should be representative of a "background" AM aerosol well mixed in the extratropical Northern Hemisphere troposphere. It is expected that the lifetime of this vertically mixed background aerosol is longer than the lifetime of fresh AM aerosols directly emitted from surface sources. However, the substantial difference to the mean lifetimes of AM aerosols obtained from aerosol models, typically in the range of 3–7 days, warrants further research on the cause of this discrepancy. Too short modeled AM aerosol lifetimes would have serious implications for air quality and climate model predictions.

2012 ◽  
Vol 12 (5) ◽  
pp. 12331-12356
Author(s):  
N. I. Kristiansen ◽  
A. Stohl ◽  
G. Wotawa

Abstract. Caesium-137 (137Cs) and iodine-131 (131I) are radionuclides of particular concern during nuclear accidents, because they are emitted in large amounts and are of significant health impact. 137Cs and 131I attach to the ambient accumulation-mode (AM) aerosols and share their fate as the aerosols are removed from the atmosphere by scavenging within clouds, precipitation and dry deposition. Here, we estimate their removal times from the atmosphere using a unique high-precision global measurement data set collected over several months after the accident at the Fukushima Dai-ichi nuclear power plant in March 2011. The noble gas xenon-133 (133Xe), also released during the accident, served as a passive tracer of air mass transport for determining the removal times of 137Cs and 131I via the decrease in the measured ratios 137Cs/133Xe and 131I/133Xe over time. After correction for radioactive decay, the 137Cs/133Xe ratios reflect the removal of aerosols by wet and dry deposition, whereas the 131I/133Xe ratios are also influenced by aerosol production from gaseous 131I. We find removal times for 137Cs of 10.0–13.9 days and for 131I of 17.1–24.2 days during April and May 2011. We discuss possible caveats (e.g. late emissions, resuspension) that can affect the results, and compare the 137Cs removal times with observation-based and modeled aerosol lifetimes. Our 137Cs removal time of 10.0–13.9 days should be representative of a "background" AM aerosol well mixed in the extratropical Northern Hemisphere troposphere. It is expected that the lifetime of this vertically mixed background aerosol is longer than the lifetime of AM aerosols originating from surface sources. However, the substantial difference to the mean lifetimes of AM aerosols obtained from aerosol models, typically in the range of 3–7 days, warrants further research on the cause of this discrepancy. Too short modeled AM aerosol lifetimes would have serious implications for air quality and climate model predictions.


2011 ◽  
Vol 11 (10) ◽  
pp. 28319-28394 ◽  
Author(s):  
A. Stohl ◽  
P. Seibert ◽  
G. Wotawa ◽  
D. Arnold ◽  
J. F. Burkhart ◽  
...  

Abstract. On 11 March 2011, an earthquake occurred about 130 km off the Pacific coast of Japan's main island Honshu, followed by a large tsunami. The resulting loss of electric power at the Fukushima Dai-ichi nuclear power plant (FD-NPP) developed into a disaster causing massive release of radioactivity into the atmosphere. In this study, we determine the emissions of two isotopes, the noble gas xenon-133 (133Xe) and the aerosol-bound caesium-137 (137Cs), which have very different release characteristics as well as behavior in the atmosphere. To determine radionuclide emissions as a function of height and time until 20 April, we made a first guess of release rates based on fuel inventories and documented accident events at the site. This first guess was subsequently improved by inverse modeling, which combined the first guess with the results of an atmospheric transport model, FLEXPART, and measurement data from several dozen stations in Japan, North America and other regions. We used both atmospheric activity concentration measurements as well as, for 137Cs, measurements of bulk deposition. Regarding 133Xe, we find a total release of 16.7 (uncertainty range 13.4–20.0) EBq, which is the largest radioactive noble gas release in history not associated with nuclear bomb testing. There is strong evidence that the first strong 133Xe release started very early, possibly immediately after the earthquake and the emergency shutdown on 11 March at 06:00 UTC. The entire noble gas inventory of reactor units 1–3 was set free into the atmosphere between 11 and 15 March 2011. For 137Cs, the inversion results give a total emission of 35.8 (23.3–50.1) PBq, or about 42% of the estimated Chernobyl emission. Our results indicate that 137Cs emissions peaked on 14–15 March but were generally high from 12 until 19 March, when they suddenly dropped by orders of magnitude exactly when spraying of water on the spent-fuel pool of unit 4 started. This indicates that emissions were not only coming from the damaged reactor cores, but also from the spent-fuel pool of unit 4 and confirms that the spraying was an effective countermeasure. We also explore the main dispersion and deposition patterns of the radioactive cloud, both regionally for Japan as well as for the entire Northern Hemisphere. While at first sight it seemed fortunate that westerly winds prevailed most of the time during the accident, a different picture emerges from our detailed analysis. Exactly during and following the period of the strongest 137Cs emissions on 14 and 15 March as well as after another period with strong emissions on 19 March, the radioactive plume was advected over Eastern Honshu Island, where precipitation deposited a large fraction of 137Cs on land surfaces. The plume was also dispersed quickly over the entire Northern Hemisphere, first reaching North America on 15 March and Europe on 22 March. In general, simulated and observed concentrations of 133Xe and 137Cs both at Japanese as well as at remote sites were in good quantitative agreement with each other. Altogether, we estimate that 6.4 TBq of 137Cs, or 19% of the total fallout until 20 April, were deposited over Japanese land areas, while most of the rest fell over the North Pacific Ocean. Only 0.7 TBq, or 2% of the total fallout were deposited on land areas other than Japan.


2020 ◽  
Author(s):  
Laura Jensen ◽  
Annette Eicker ◽  
Tobias Stacke ◽  
Henryk Dobslaw

&lt;p&gt;Reliable predictions of terrestrial water storage (TWS) changes for the next couple of years would be extremely valuable for, e.g., agriculture and water management. In contrast to long-term projections of future climate conditions, so-called decadal predictions do not depend on prescribed CO&lt;sub&gt;2 &lt;/sub&gt;scenarios but provide unconditional forecasts similar to numerical weather models. Therefore, opposed to climate projections, decadal predictions (or hindcasts, if run for the past) can directly be compared to observations. Here, we evaluate decadal hindcasts of TWS related variables from an ensemble of 5 coupled CMIP5 climate models against a TWS data set based on GRACE satellite observations.&lt;/p&gt; &lt;p&gt;Since data from the CMIP5 models and GRACE is jointly available in only 9 years, we access a GRACE-like reconstruction of TWS derived from precipitation and temperature data sets (Humphrey and Gudmundsson, 2019), which expands the analysis time-frame to 41 years. The skill of the decadal hindcasts is assessed by means of anomaly correlations and root-mean-square deviations (RMSD) for the yearly global average and aggregated over different climate zones. Furthermore, we compute global maps of correlation and RMSD.&lt;/p&gt; &lt;p&gt;We find that at least for the first two prediction years the decadal model experiments clearly outperform the classical climate projections, regionally even for the third year. We can thereby demonstrate that the observation type &amp;#8220;terrestrial water storage&amp;#8221; as available from the GRACE and GRACE-FO missions is suitable as additional data set in the validation and/or calibration of climate model experiments.&lt;/p&gt;


2016 ◽  
Vol 12 (8) ◽  
pp. 1645-1662 ◽  
Author(s):  
Emmanuele Russo ◽  
Ulrich Cubasch

Abstract. The improvement in resolution of climate models has always been mentioned as one of the most important factors when investigating past climatic conditions, especially in order to evaluate and compare the results against proxy data. Despite this, only a few studies have tried to directly estimate the possible advantages of highly resolved simulations for the study of past climate change. Motivated by such considerations, in this paper we present a set of high-resolution simulations for different time slices of the mid-to-late Holocene performed over Europe using the state-of-the-art regional climate model COSMO-CLM. After proposing and testing a model configuration suitable for paleoclimate applications, the aforementioned mid-to-late Holocene simulations are compared against a new pollen-based climate reconstruction data set, covering almost all of Europe, with two main objectives: testing the advantages of high-resolution simulations for paleoclimatic applications, and investigating the response of temperature to variations in the seasonal cycle of insolation during the mid-to-late Holocene. With the aim of giving physically plausible interpretations of the mismatches between model and reconstructions, possible uncertainties of the pollen-based reconstructions are taken into consideration. Focusing our analysis on near-surface temperature, we can demonstrate that concrete advantages arise in the use of highly resolved data for the comparison against proxy-reconstructions and the investigation of past climate change. Additionally, our results reinforce previous findings showing that summertime temperatures during the mid-to-late Holocene were driven mainly by changes in insolation and that the model is too sensitive to such changes over Southern Europe, resulting in drier and warmer conditions. However, in winter, the model does not correctly reproduce the same amplitude of changes evident in the reconstructions, even if it captures the main pattern of the pollen data set over most of the domain for the time periods under investigation. Through the analysis of variations in atmospheric circulation we suggest that, even though the wintertime discrepancies between the two data sets in some areas are most likely due to high pollen uncertainties, in general the model seems to underestimate the changes in the amplitude of the North Atlantic Oscillation, overestimating the contribution of secondary modes of variability.


2017 ◽  
Author(s):  
Lucy S. Neal ◽  
Mohit Dalvi ◽  
Gerd Folberth ◽  
Rachel N. McInnes ◽  
Paul Agnew ◽  
...  

Abstract. There is a clear need for the development of modelling frameworks for both climate change and air quality to help inform policies for addressing these issues. This paper presents an initial attempt to develop a single modelling framework, by introducing a greater degree of consistency in the modelling framework by using a two-step, one-way nested configuration of models, from a global composition-climate model (GCCM) (140 km resolution) to a regional composition-climate model covering Europe (RCCM) (50 km resolution) and finally to a high (12 km) resolution model over the UK (AQUM). The latter model is used to produce routine air quality forecasts for the UK. All three models are based on the Met Office's Unified Model (MetUM). In order to better understand the impact of resolution on the downscaling of projections of future climate and air quality, we have used this nest of models to simulate a five year period using present-day emissions and under present-day climate conditions. We also consider the impact of running the higher resolution model with higher spatial resolution emissions, rather than simply regridding emissions from the RCCM. We present an evaluation of the models compared to in situ air quality observations over the UK, plus a comparison against an independent 1 km resolution gridded dataset, derived from a combination of modelling and observations. We show that using a high resolution model over the UK has some benefits in improving air quality modelling, but that the use of higher spatial resolution emissions is important to capture local variations in concentrations, particularly for primary pollutants such as nitrogen dioxide and sulphur dioxide. For secondary pollutants such as ozone and the secondary component of PM10, the benefits of a higher resolution nested model are more limited and reasons for this are discussed. This study confirms that the resolution of models is not the only factor in determining model performance - consistency between nested models is also important.


2016 ◽  
Vol 20 (5) ◽  
pp. 1785-1808 ◽  
Author(s):  
Lamprini V. Papadimitriou ◽  
Aristeidis G. Koutroulis ◽  
Manolis G. Grillakis ◽  
Ioannis K. Tsanis

Abstract. Climate models project a much more substantial warming than the 2 °C target under the more probable emission scenarios, making higher-end scenarios increasingly plausible. Freshwater availability under such conditions is a key issue of concern. In this study, an ensemble of Euro-CORDEX projections under RCP8.5 is used to assess the mean and low hydrological states under +4 °C of global warming for the European region. Five major European catchments were analysed in terms of future drought climatology and the impact of +2 °C versus +4 °C global warming was investigated. The effect of bias correction of the climate model outputs and the observations used for this adjustment was also quantified. Projections indicate an intensification of the water cycle at higher levels of warming. Even for areas where the average state may not considerably be affected, low flows are expected to reduce, leading to changes in the number of dry days and thus drought climatology. The identified increasing or decreasing runoff trends are substantially intensified when moving from the +2 to the +4° of global warming. Bias correction resulted in an improved representation of the historical hydrology. It is also found that the selection of the observational data set for the application of the bias correction has an impact on the projected signal that could be of the same order of magnitude to the selection of the Global Climate Model (GCM).


2018 ◽  
Vol 18 (21) ◽  
pp. 16155-16172 ◽  
Author(s):  
Laura E. Revell ◽  
Andrea Stenke ◽  
Fiona Tummon ◽  
Aryeh Feinberg ◽  
Eugene Rozanov ◽  
...  

Abstract. Previous multi-model intercomparisons have shown that chemistry–climate models exhibit significant biases in tropospheric ozone compared with observations. We investigate annual-mean tropospheric column ozone in 15 models participating in the SPARC–IGAC (Stratosphere–troposphere Processes And their Role in Climate–International Global Atmospheric Chemistry) Chemistry-Climate Model Initiative (CCMI). These models exhibit a positive bias, on average, of up to 40 %–50 % in the Northern Hemisphere compared with observations derived from the Ozone Monitoring Instrument and Microwave Limb Sounder (OMI/MLS), and a negative bias of up to ∼30 % in the Southern Hemisphere. SOCOLv3.0 (version 3 of the Solar-Climate Ozone Links CCM), which participated in CCMI, simulates global-mean tropospheric ozone columns of 40.2 DU – approximately 33 % larger than the CCMI multi-model mean. Here we introduce an updated version of SOCOLv3.0, “SOCOLv3.1”, which includes an improved treatment of ozone sink processes, and results in a reduction in the tropospheric column ozone bias of up to 8 DU, mostly due to the inclusion of N2O5 hydrolysis on tropospheric aerosols. As a result of these developments, tropospheric column ozone amounts simulated by SOCOLv3.1 are comparable with several other CCMI models. We apply Gaussian process emulation and sensitivity analysis to understand the remaining ozone bias in SOCOLv3.1. This shows that ozone precursors (nitrogen oxides (NOx), carbon monoxide, methane and other volatile organic compounds, VOCs) are responsible for more than 90 % of the variance in tropospheric ozone. However, it may not be the emissions inventories themselves that result in the bias, but how the emissions are handled in SOCOLv3.1, and we discuss this in the wider context of the other CCMI models. Given that the emissions data set to be used for phase 6 of the Coupled Model Intercomparison Project includes approximately 20 % more NOx than the data set used for CCMI, further work is urgently needed to address the challenges of simulating sub-grid processes of importance to tropospheric ozone in the current generation of chemistry–climate models.


2012 ◽  
Vol 12 (20) ◽  
pp. 9441-9458 ◽  
Author(s):  
A. M. M. Manders ◽  
E. van Meijgaard ◽  
A. C. Mues ◽  
R. Kranenburg ◽  
L. H. van Ulft ◽  
...  

Abstract. Climate change may have an impact on air quality (ozone, particulate matter) due to the strong dependency of air quality on meteorology. The effect is often studied using a global climate model (GCM) to produce meteorological fields that are subsequently used by chemical transport models. However, climate models themselves are subject to large uncertainties and fail to reproduce the present-day climate adequately. The present study illustrates the impact of these uncertainties on air quality. To this end, output from the SRES-A1B constraint transient runs with two GCMs, i.e. ECHAM5 and MIROC-hires, has been dynamically downscaled with the regional climate model RACMO2 and used to force a constant emission run with the chemistry transport model LOTOS-EUROS in a one-way coupled run covering the period 1970–2060. Results from the two climate simulations have been compared with a RACMO2-LOTOS-EUROS (RLE) simulation forced by the ERA-Interim reanalysis for the period 1989–2009. Both RLE_ECHAM and RLE_MIROC showed considerable deviations from RLE_ERA for daily maximum temperature, precipitation and wind speed. Moreover, sign and magnitude of these deviations depended on the region. The differences in average present-day concentrations between the simulations were equal to (RLE_MIROC) or even larger than (RLE_ECHAM) the differences in concentrations between present-day and future climate (2041–2060). The climate simulations agreed on a future increase in average summer ozone daily maximum concentrations of 5–10 μg m−3 in parts of Southern Europe and a smaller increase in Western and Central Europe. Annual average PM10 concentrations increased 0.5–1.0 μg m−3 in North-West Europe and the Po Valley, but these numbers are rather uncertain: overall, changes for PM10 were small, both positive and negative changes were found, and for many locations the two climate runs did not agree on the sign of the change. This illustrates that results from individual climate runs can at best indicate tendencies and should therefore be interpreted with great care.


2012 ◽  
Vol 12 (5) ◽  
pp. 12245-12285 ◽  
Author(s):  
A. M. M. Manders ◽  
E. van Meijgaard ◽  
A. C. Mues ◽  
R. Kranenburg ◽  
L. H. van Ulft ◽  
...  

Abstract. Climate change may have an impact on air quality (ozone, particulate matter) due to the strong dependency of air quality on meteorology. The effect is often studied using a global climate model (GCM) to produce meteorological fields that are subsequently used by chemical transport models. However, climate models themselves are subject to large uncertainties and fail to adequately reproduce the present-day climate. The present study illustrates the impact of this uncertainty on air quality. To this end, output from the SRES-A1B constraint transient runs with two GCMs, i.e. ECHAM5 and MIROC-hires, has been dynamically downscaled with the regional climate model RACMO2 and used to force a constant emission run with the chemistry transport model LOTOS-EUROS in a one-way coupled run covering the period 1970–2060. Results from the two climate simulations have been compared with a RACMO2-LOTOS-EUROS (RLE) simulation forced by the ERA-Interim reanalysis for the period 1989–2009. Both RLE_ECHAM and RLE_MIROC showed considerable deviations from RLE_ERA in daily maximum temperature, precipitation and wind speed. Moreover, sign and magnitude of these deviations depended on the region. Differences in average concentrations for the present-day simulations were found of equal to (RLE_MIROC) or even larger than (RLE_ECHAM) the differences in concentration between present-day and future climate (2041–2060). The climate simulations agreed on a future increase in average summer ozone daily maximum concentrations (5–10 μg m−3) in parts of Southern Europe and a smaller increase in Western and Central Europe. Annual average PM10 concentrations increased (0.5–1.0 μg m−3) in North-West Europe and the Po Valley, but these numbers are rather uncertain. Overall, changes for PM10 were small, both positive and negative changes were found, and for many locations the two runs did not agree on the sign of the change. The approach taken here illustrates that results from individual climate runs can at best indicate tendencies and should therefore be interpreted with great care.


2005 ◽  
Vol 5 ◽  
pp. 119-125 ◽  
Author(s):  
S. Kotlarski ◽  
A. Block ◽  
U. Böhm ◽  
D. Jacob ◽  
K. Keuler ◽  
...  

Abstract. The ERA15 Reanalysis (1979-1993) has been dynamically downscaled over Central Europe using 4 different regional climate models. The regional simulations were analysed with respect to 2m temperature and total precipitation, the main input parameters for hydrological applications. Model results were validated against three reference data sets (ERA15, CRU, DWD) and uncertainty ranges were derived. For mean annual 2 m temperature over Germany, the simulation bias lies between -1.1°C and +0.9°C depending on the combination of model and reference data set. The bias of mean annual precipitation varies between -31 and +108 mm/year. Differences between RCM results are of the same magnitude as differences between the reference data sets.


Sign in / Sign up

Export Citation Format

Share Document