scholarly journals Laboratory measurements and model sensitivity studies of dust deposition ice nucleation

2012 ◽  
Vol 12 (1) ◽  
pp. 2483-2516 ◽  
Author(s):  
G. Kulkarni ◽  
J. Fan ◽  
J. M. Comstock ◽  
X. Liu ◽  
M. Ovchinnikov

Abstract. We investigated the ice nucleating properties of mineral dust particles to understand the sensitivity of modeled cloud properties to different representations of contact angle in the Classical Nucleation Theory (CNT): onset single angle and probability density function (PDF) distribution approaches. These contact angle representations are based on two sets of laboratory deposition ice nucleation measurements: Arizona Test Dust (ATD) particles of 100, 300, and 500 nm sizes were tested at three different temperatures (−25, −30 and −35 °C), and 400 nm ATD and Kaolinite dust species were tested at two different temperatures (−30 and −35 °C). These measurements were used to derive the onset relative humidity with respect to ice (RHice) required to activate 1% of dust particles as ice nuclei, from which the onset single contact angles were then calculated based on the CNT. For the PDF representation, parameters of the log-normal contact angle distribution (mean and standard deviation) were determined by fitting the CNT-predicted activated fraction to the measurements at different RHice. Results show that onset single contact angles are not much different between experiments, while the PDF parameters are sensitive to those environmental conditions (i.e., temperature and dust size). The cloud resolving model simulations show that cloud properties (i.e. ice number concentration, ice water content, and cloud initiation times) are sensitive to onset single contact angles and PDF distribution parameters, particularly to the mean value. The comparison of our experimental results with other studies shows that under similar measurement conditions the onset single contact angles are consistent within ±2.0°, while our derived PDF parameters have discrepancies.

2012 ◽  
Vol 12 (16) ◽  
pp. 7295-7308 ◽  
Author(s):  
G. Kulkarni ◽  
J. Fan ◽  
J. M. Comstock ◽  
X. Liu ◽  
M. Ovchinnikov

Abstract. We investigated the ice nucleating properties of mineral dust particles to understand the sensitivity of simulated cloud properties to two different representations of contact angle in the Classical Nucleation Theory (CNT). These contact angle representations are based on two sets of laboratory deposition ice nucleation measurements: Arizona Test Dust (ATD) particles of 100, 300 and 500 nm sizes were tested at three different temperatures (−25, −30 and −35 °C), and 400 nm ATD and kaolinite dust species were tested at two different temperatures (−30 and −35 °C). These measurements were used to derive the onset relative humidity with respect to ice (RHice) required to activate 1% of dust particles as ice nuclei, from which the onset single contact angles were then calculated based on CNT. For the probability density function (PDF) representation, parameters of the log-normal contact angle distribution were determined by fitting CNT-predicted activated fraction to the measurements at different RHice. Results show that onset single contact angles vary from ~18 to 24 degrees, while the PDF parameters are sensitive to the measurement conditions (i.e. temperature and dust size). Cloud modeling simulations were performed to understand the sensitivity of cloud properties (i.e. ice number concentration, ice water content, and cloud initiation times) to the representation of contact angle and PDF distribution parameters. The model simulations show that cloud properties are sensitive to onset single contact angles and PDF distribution parameters. The comparison of our experimental results with other studies shows that under similar measurement conditions the onset single contact angles are consistent within ±2.0 degrees, while our derived PDF parameters have larger discrepancies.


2012 ◽  
Vol 12 (2) ◽  
pp. 1189-1201 ◽  
Author(s):  
M. J. Wheeler ◽  
A. K. Bertram

Abstract. Deposition nucleation on two mineral species, kaolinite and illite, was studied using a flow cell coupled to an optical microscope. The results show that the Sice conditions when ice first nucleated, defined as the onset Sice (Sice,onset), is a strong function of the surface area available for nucleation, varying from 100% to 125% at temperatures between 242 and 239 K. The surface area dependent data could not be described accurately using classical nucleation theory and the assumption of a single contact angle (defined here as the single-α model). These results suggest that caution should be applied when using contact angles determined from Sice,onset data and the single-α model. In contrast to the single-α model, the active site model, the deterministic model, and a model with a distribution of contact angles fit the data within experimental uncertainties. Parameters from the fits to the data are presented.


2011 ◽  
Vol 11 (7) ◽  
pp. 21171-21200 ◽  
Author(s):  
M. J. Wheeler ◽  
A. K. Bertram

Abstract. Deposition freezing on two mineral species, kaolinite and illite, was studied using a flow cell coupled to an optical microscope at ∼240 K. The results show that the onset Sice (defined as the Sice conditions when ice first nucleated) is a strong function of the surface area available for nucleation, varying from 100 % to 125 %. The surface area dependent data could not be described accurately using classical nucleation theory and the assumption of a single contact angle (defined here as the single-α model). These results suggest that caution should be applied when using contact angles determined from onset Sice data and the single-α model. In contrast to the single-α model, the active site model, the deterministic model, and a model with a normal distribution of contact angles fit the data within experimental uncertainties. Parameters from the fits to the data are presented.


2009 ◽  
Vol 9 (3) ◽  
pp. 11299-11332
Author(s):  
G. Kulkarni ◽  
S. Dobbie

Abstract. A newly developed ice nucleation experimental set up was used to investigate the heterogeneous ice nucleation properties of three Saharan and one Spanish dust particle samples. It was observed that the spread in the onset relative humidities with respect to ice (RHi) for Saharan dust particles varied from 104% to 110%, whereas for the Spanish dust from 106% to 110%. The elemental composition analysis shows a prominent Ca feature in the Spanish dust sample which could potentially explain the differences in nucleation threshold. Although the spread in the onset RHi) for the Saharan dust samples were in agreement, the active fractions and nucleation time-lags calculated at various temperature and RHi) conditions were found to differ. This could be due to the subtle variation in the elemental composition of the dust samples, and surface irregularities like steps, cracks, cavities etc. A combination of classical nucleation theory and active site theory is used to understand the importance of these surface irregularities on the nucleability parameter contact angle that is widely used in the ice cloud modeling. These calculations show that the surface irregularities can reduce the contact angle by approximately 10°.


2010 ◽  
Vol 10 (1) ◽  
pp. 95-105 ◽  
Author(s):  
G. Kulkarni ◽  
S. Dobbie

Abstract. A newly developed ice nucleation experimental set up was used to investigate the heterogeneous ice nucleation properties of three Saharan and one Spanish dust particle samples. It was observed that the spread in the onset relative humidities with respect to ice (RHi) for Saharan dust particles varied from 104% to 110%, whereas for the Spanish dust from 106% to 110%. The elemental composition analysis shows a prominent Ca feature in the Spanish dust sample which could potentially explain the differences in nucleation threshold. Although the spread in the onset RHi for the three Saharan dust samples were in agreement, the active fractions and nucleation time-lags calculated at various temperature and RHi conditions were found to differ. This could be due to the subtle variation in the elemental composition of the dust samples, and surface irregularities like steps, cracks, cavities etc. A combination of classical nucleation theory and active site theory is used to understand the importance of these surface irregularities on the nucleability parameter, contact angle that is widely used in ice cloud modeling. These calculations show that the surface irregularities can reduce the contact angle by approximately 10 degrees.


2007 ◽  
Vol 7 (19) ◽  
pp. 5081-5091 ◽  
Author(s):  
C. Marcolli ◽  
S. Gedamke ◽  
T. Peter ◽  
B. Zobrist

Abstract. A differential scanning calorimeter (DSC) was used to explore heterogeneous ice nucleation of emulsified aqueous suspensions of two Arizona test dust (ATD) samples with particle diameters of nominally 0–3 and 0–7 μm, respectively. Aqueous suspensions with ATD concentrations of 0.01–20 wt% have been investigated. The DSC thermograms exhibit a homogeneous and a heterogeneous freezing peak whose intensity ratios vary with the ATD concentration in the aqueous suspensions. Homogeneous freezing temperatures are in good agreement with recent measurements by other techniques. Depending on ATD concentration, heterogeneous ice nucleation occurred at temperatures as high as 256 K or down to the onset of homogeneous ice nucleation (237 K). For ATD-induced ice formation Classical Nucleation Theory (CNT) offers a suitable framework to parameterize nucleation rates as a function of temperature, experimentally determined ATD size, and emulsion droplet volume distributions. The latter two quantities serve to estimate the total heterogeneous surface area present in a droplet, whereas the suitability of an individual heterogeneous site to trigger nucleation is described by the compatibility function (or contact angle) in CNT. The intensity ratio of homogeneous to heterogeneous freezing peaks is in good agreement with the assumption that the ATD particles are randomly distributed amongst the emulsion droplets. The observed dependence of the heterogeneous freezing temperatures on ATD concentrations cannot be described by assuming a constant contact angle for all ATD particles, but requires the ice nucleation efficiency of ATD particles to be (log)normally distributed amongst the particles. Best quantitative agreement is reached when explicitly assuming that high-compatibility sites are rare and that therefore larger particles have on average more and better active sites than smaller ones. This analysis suggests that a particle has to have a diameter of at least 0.1 μm to exhibit on average one active site.


2015 ◽  
Vol 15 (7) ◽  
pp. 3703-3717 ◽  
Author(s):  
I. Steinke ◽  
C. Hoose ◽  
O. Möhler ◽  
P. Connolly ◽  
T. Leisner

Abstract. Deposition nucleation experiments with Arizona Test Dust (ATD) as a surrogate for mineral dusts were conducted at the AIDA cloud chamber at temperatures between 220 and 250 K. The influence of the aerosol size distribution and the cooling rate on the ice nucleation efficiencies was investigated. Ice nucleation active surface site (INAS) densities were calculated to quantify the ice nucleation efficiency as a function of temperature, humidity and the aerosol surface area concentration. Additionally, a contact angle parameterization according to classical nucleation theory was fitted to the experimental data in order to relate the ice nucleation efficiencies to contact angle distributions. From this study it can be concluded that the INAS density formulation is a very useful tool to describe the temperature- and humidity-dependent ice nucleation efficiency of ATD particles. Deposition nucleation on ATD particles can be described by a temperature- and relative-humidity-dependent INAS density function ns(T, Sice) with ns(xtherm) = 1.88 ×105 · exp(0.2659 · xtherm) [m−2] , (1) where the temperature- and saturation-dependent function xtherm is defined as xtherm = −(T−273.2)+(Sice−1) ×100, (2) with the saturation ratio with respect to ice Sice >1 and within a temperature range between 226 and 250 K. For lower temperatures, xtherm deviates from a linear behavior with temperature and relative humidity over ice. Also, two different approaches for describing the time dependence of deposition nucleation initiated by ATD particles are proposed. Box model estimates suggest that the time-dependent contribution is only relevant for small cooling rates and low number fractions of ice-active particles.


2013 ◽  
Vol 13 (13) ◽  
pp. 6603-6622 ◽  
Author(s):  
Y. J. Rigg ◽  
P. A. Alpert ◽  
D. A. Knopf

Abstract. Immersion freezing of water and aqueous (NH4)2SO4 droplets containing leonardite (LEO) and Pahokee peat (PP) serving as surrogates for humic-like substances (HULIS) has been investigated. Organic aerosol containing HULIS are ubiquitous in the atmosphere; however, their potential for ice cloud formation is uncertain. Immersion freezing has been studied for temperatures as low as 215 K and solution water activity, aw, from 0.85 to 1.0. The freezing temperatures of water and aqueous solution droplets containing LEO and PP are 5–15 K warmer than homogeneous ice nucleation temperatures. Heterogeneous freezing temperatures can be represented by a horizontal shift of the ice melting curve as a function of solution aw by Δaw = 0.2703 and 0.2466, respectively. Corresponding hetrogeneous ice nucleation rate coefficients, Jhet, are (9.6 ± 2.5)×104 and (5.4 ± 1.4)×104 cm−2 s−1 for LEO and PP containing droplets, respectively, and remain constant along freezing curves characterized by Δaw. Consequently predictions of freezing temperatures and kinetics can be made without knowledge of the solute type when relative humidity and ice nuclei (IN) surface areas are known. The acquired ice nucleation data are applied to evaluate different approaches to fit and reproduce experimentally derived frozen fractions. In addition, we apply a basic formulation of classical nucleation theory (α(T)-model) to calculate contact angles and frozen fractions. Contact angles calculated for each ice nucleus as a function of temperature, α(T)-model, reproduce exactly experimentally derived frozen fractions without involving free-fit parameters. However, assigning the IN a single contact angle for the entire population (single-α model) is not suited to represent the frozen fractions. Application of α-PDF, active sites, and deterministic model approaches to measured frozen fractions yield similar good representations. Furthermore, when using a single parameterization of α-PDF or active sites distribution to fit all individual aw immersion freezing data simultaneously, frozen fraction curves are not reproduced. This implies that these fitting formulations cannot be applied to immersion freezing of aqueous solutions, and suggests that derived fit parameters do not represent independent particle properties. Thus, from fitting frozen fractions only, the underlying ice nucleation mechanism and nature of the ice nucleating sites cannot be inferred. In contrast to using fitted functions obtained to represent experimental conditions only, we suggest to use experimentally derived Jhet as a function of temperature and aw that can be applied to conditions outside of those probed in laboratory. This is because Jhet(T) is independent of time and IN surface areas in contrast to the fit parameters obtained by representation of experimentally derived frozen fractions.


SPE Journal ◽  
2016 ◽  
Vol 21 (04) ◽  
pp. 1204-1213 ◽  
Author(s):  
Frieder Mugele ◽  
Igor Siretanu ◽  
Naveen Kumar ◽  
Bijoy Bera ◽  
Lei Wang ◽  
...  

Summary Most solid surfaces acquire a finite surface charge after exposure to aqueous environments caused by desorption and/or adsorption of ionic species. The resulting electrostatic forces play a crucial role in many fields of science and technology, including colloidal stability, self-assembly, wetting, and biophysics. Enhanced oil recovery (EOR) is an example of a large-scale industrial process that hinges in many respects on these phenomena. In this paper, we present a series of experiments illustrating fundamental aspects of low-salinity waterflooding in well-defined model systems. We show how pH and ion content of the water phase as well as the presence of model polar components (fatty acids) in the oil phase affect the wettability (i.e., contact-angle distribution) of oil/water/rock systems. Specifically, we discuss high-resolution atomic-force microscopy (AFM) experiments demonstrating the preferential adsorption of multivalent cations to mineral surfaces such as mica and gibbsite. Cation adsorption leads to increased and, in some cases, reversed surface charge at the solid/liquid interface. In particular, the adsorption of divalent cations gives rise to charge reversal and thereby induces a transition from complete water-wetting in the absence to finite contact angles in the presence of such ions. Although already dramatic for pure alkanes as base oil, adding fatty acids to the oil phase enhances the effect of divalent ions on the oil/water/rock wettability even more. In this case, contact-angle variations of more than 70 ° can be observed as a function of the salt concentration. This enhancement is caused by the deposition of a thin film of fatty acid on the solid surface. AFM as well as surface plasmon-resonance spectroscopy measurement in a microfluidic continuous flow cell directly demonstrate that adsorbed Ca2+ ions promote secondary adsorption of acidic components from the oil phase. The combination of the effects discussed provides a rational scenario explaining many aspects of the success of low-salinity waterflooding.


2019 ◽  
Author(s):  
Robert O. David ◽  
Jonas Fahrni ◽  
Claudia Marcolli ◽  
Fabian Mahrt ◽  
Dominik Brühwiler ◽  
...  

Abstract. It has recently been shown that pore condensation and freezing (PCF) is a mechanism responsible for ice formation under cirrus cloud conditions. PCF is defined as the condensation of liquid water in narrow capillaries below water saturation due to the Kelvin effect, followed by either heterogeneous or homogeneous nucleation depending on the temperature regime and presence of an ice nucleating active site. By using sol-gel synthesized silica with well-defined pore diameters, morphology and distinct chemical surface-functionalization, the role of the water-silica contact angle and pore width on PCF is investigated. We find that contact angle and pore width play an important role in determining the relative humidity required for capillary condensation as predicted by the Kelvin effect and subsequent ice nucleation at cirrus temperatures. For the pore diameters and contact angles covered in this study, 2.2–9.2 nm and 15–78°, respectively, our results reveal that the contact angle plays an important role in predicting the humidity required for pore filling while the pore diameter determines the ability of pore water to freeze. For T > 235 K and below water saturation, pore diameters and contact angles were not able to predict the freezing ability of the particles suggesting an absence of active sites, thus ice nucleation did not proceed via a PCF mechanism. Rather, the ice nucleating ability of the particles depended solely on chemical functionalization. Therefore, parameterizations for the ice nucleating abilities of particles at cirrus conditions should differ from parameterizations at mixed-phase clouds conditions. Our results support PCF as the atmospherically relevant ice nucleation mechanism below water saturation when porous surfaces are encountered in the troposphere.


Sign in / Sign up

Export Citation Format

Share Document