scholarly journals HO<sub>x</sub> measurements in the summertime upper troposphere over Europe: a comparison of observations to a box model and a 3-D model

2012 ◽  
Vol 12 (11) ◽  
pp. 30619-30660 ◽  
Author(s):  
E. Regelin ◽  
H. Harder ◽  
M. Martinez ◽  
D. Kubistin ◽  
C. Tatum Ernest ◽  
...  

Abstract. In-situ airborne measurements of OH and HO2 with the HORUS (HydrOxyl Radical measurement Unit based on fluorescence Spectroscopy) instrument were performed in the summertime upper troposphere across Europe during the HOOVER 2 (HOx OVer EuRope) campaign in July 2007. Complementary measurements of trace gas species and photolysis frequencies were conducted to obtain a broad data set, which has been used to quantify the significant HOx sources and sinks. In this study we compare the in-situ measurement of OH and HO2 with simulated mixing ratios from the constrained box model CAABA/MECCA (Chemistry As A Box Model Application/Module Efficiently Calculating the Chemistry of the Atmosphere), and the global circulation model EMAC (ECHAM5/MESSy Atmospheric Chemistry Model). The constrained box model reproduces the observed OH and HO2 mixing ratios with better agreement (obs/mod median 98% OH, 96% HO2) than the global model (median 76% OH, 59% HO2). The observations and the computed HOx sources and sinks are used to identify deviations between the models and their impacts on the calculated HOx budget.

2013 ◽  
Vol 13 (21) ◽  
pp. 10703-10720 ◽  
Author(s):  
E. Regelin ◽  
H. Harder ◽  
M. Martinez ◽  
D. Kubistin ◽  
C. Tatum Ernest ◽  
...  

Abstract. In situ airborne measurements of OH and HO2 with the HORUS (HydrOxyl Radical measurement Unit based on fluorescence Spectroscopy) instrument were performed in the summertime upper troposphere across Europe during the HOOVER 2 (HOx OVer EuRope) campaign in July 2007. Complementary measurements of trace gas species and photolysis frequencies were conducted to obtain a broad data set, which has been used to quantify the significant HOx sources and sinks. In this study we compare the in situ measurement of OH and HO2 with simulated mixing ratios from the constrained box model CAABA/MECCA (Chemistry As A Box Model Application/Module Efficiently Calculating the Chemistry of the Atmosphere), and the global circulation model EMAC (ECHAM5/MESSy Atmospheric Chemistry Model). The constrained box model reproduces the observed OH and HO2 mixing ratios with better agreement (obs/mod median 98% OH, 96% HO2) than the global model (median 76% OH, 59% HO2). The observations and the computed HOx sources and sinks are used to identify deviations between the models and their impacts on the calculated HOx budget.


2010 ◽  
Vol 10 (8) ◽  
pp. 3759-3773 ◽  
Author(s):  
M. Martinez ◽  
H. Harder ◽  
D. Kubistin ◽  
M. Rudolf ◽  
H. Bozem ◽  
...  

Abstract. Direct measurements of OH and HO2 over a tropical rainforest were made for the first time during the GABRIEL campaign in October 2005, deploying the custom-built HORUS instrument (HydrOxyl Radical measurement Unit based on fluorescence Spectroscopy), adapted to fly in a Learjet wingpod. Biogenic hydrocarbon emissions were expected to strongly reduce the OH and HO2 mixing ratios as the air is transported from the ocean over the forest. However, surprisingly high mixing ratios of both OH and HO2 were encountered in the boundary layer over the rainforest. The HORUS instrumentation and calibration methods are described in detail and the measurement results obtained are discussed. The extensive dataset collected during GABRIEL, including measurements of many other trace gases and photolysis frequencies, has been used to quantify the main sources and sinks of OH. Comparison of these measurement-derived formation and loss rates of OH indicates strong previously overlooked recycling of OH in the boundary layer over the tropical rainforest, occurring in chorus with isoprene emission.


2006 ◽  
Vol 6 (2) ◽  
pp. 283-301 ◽  
Author(s):  
A. Engel ◽  
H. Bönisch ◽  
D. Brunner ◽  
H. Fischer ◽  
H. Franke ◽  
...  

Abstract. During SPURT (Spurenstofftransport in der Tropopausenregion, trace gas transport in the tropopause region) we performed measurements of a wide range of trace gases with different lifetimes and sink/source characteristics in the northern hemispheric upper troposphere (UT) and lowermost stratosphere (LMS). A large number of in-situ instruments were deployed on board a Learjet 35A, flying at altitudes up to 13.7 km, at times reaching to nearly 380 K potential temperature. Eight measurement campaigns (consisting of a total of 36 flights), distributed over all seasons and typically covering latitudes between 35° N and 75° N in the European longitude sector (10° W–20° E), were performed. Here we present an overview of the project, describing the instrumentation, the encountered meteorological situations during the campaigns and the data set available from SPURT. Measurements were obtained for N2O, CH4, CO, CO2, CFC12, H2, SF6, NO, NOy, O3 and H2O. We illustrate the strength of this new data set by showing mean distributions of the mixing ratios of selected trace gases, using a potential temperature-equivalent latitude coordinate system. The observations reveal that the LMS is most stratospheric in character during spring, with the highest mixing ratios of O3 and NOy and the lowest mixing ratios of N2O and SF6. The lowest mixing ratios of NOy and O3 are observed during autumn, together with the highest mixing ratios of N2O and SF6 indicating a strong tropospheric influence. For H2O, however, the maximum concentrations in the LMS are found during summer, suggesting unique (temperature- and convection-controlled) conditions for this molecule during transport across the tropopause. The SPURT data set is presently the most accurate and complete data set for many trace species in the LMS, and its main value is the simultaneous measurement of a suite of trace gases having different lifetimes and physical-chemical histories. It is thus very well suited for studies of atmospheric transport, for model validation, and for investigations of seasonal changes in the UT/LMS, as demonstrated in accompanying and elsewhere published studies.


2008 ◽  
Vol 8 (4) ◽  
pp. 15491-15536 ◽  
Author(s):  
M. Martinez ◽  
H. Harder ◽  
D. Kubistin ◽  
M. Rudolf ◽  
H. Bozem ◽  
...  

Abstract. Direct measurements of OH and HO2 over a tropical rainforest were made for the first time during the GABRIEL campaign in October 2005, deploying the custom-built HORUS instrument (HydrOxyl Radical measurement Unit based on fluorescence Spectroscopy), adapted to fly in a Learjet wingpod. Biogenic hydrocarbon emissions were expected to strongly reduce the OH and HO2 mixing ratios as the air is transported from the ocean over the forest. However, surprisingly high mixing ratios of both OH and HO2 were encountered in the boundary layer over the rainforest. The HORUS instrumentation and calibration methods are described in detail and the measurement results obtained are discussed. The extensive dataset collected during GABRIEL, including measurements of many other trace gases and photolysis frequencies, has been used to quantify the main sources and sinks of OH. Comparison of these measurement-derived formation and loss rates of OH indicates strong previously overlooked recycling of OH in the boundary layer over the tropical rainforest, occurring in chorus with isoprene emission.


2005 ◽  
Vol 5 (4) ◽  
pp. 5081-5126
Author(s):  
A. Engel ◽  
H. Bönisch ◽  
D. Brunner ◽  
H. Fischer ◽  
H. Franke ◽  
...  

Abstract. During SPURT (Spurenstofftransport in der Tropopausenregion, trace gas transport in the tropopause region) we performed measurements of a wide range of trace gases with different lifetimes and sink/source characteristics in the northern hemispheric upper troposphere (UT) and lowermost stratosphere (LMS). A large number of in-situ instruments were deployed on board a Learjet 35A, flying at altitudes up to 13.7 km, at times reaching to nearly 380 K potential temperature. Eight measurement campaigns (consisting of a total of 36 flights), distributed over all seasons and typically covering latitudes between 35° N and 75° N in the European longitude sector (10° W–20° E), were performed. Here we present an overview of the project, describing the instrumentation, the encountered meteorological situations during the campaigns and the data set available from SPURT. Measurements were obtained for N2O, CH4, CO, CO2, CFC12, H2, SF6, NO, NOy, O3 and H2O. We illustrate the strength of this new data set by showing mean distributions of the mixing ratios of selected trace gases, using a potential temperature – equivalent latitude coordinate system. The observations reveal that the LMS is most stratospheric in character during spring, with the highest mixing ratios of O3 and NOy and the lowest mixing ratios of N2O and SF6. The lowest mixing ratios of NOy and O3 are observed during autumn, together with the highest mixing ratios of N2O and SF6 indicating a strong tropospheric influence. For H2O, however, the maximum concentrations in the LMS are found during summer, suggesting unique (temperature- and convection-controlled) conditions for this molecule during transport across the tropopause. The SPURT data set is presently the most accurate and complete data set for many trace species in the LMS, and its main value is the simultaneous measurement of a suite of trace gases having different lifetimes and physical-chemical histories. It is thus very well suited for studies of atmospheric transport, for model validation, and for investigations of seasonal changes in the UT/LMS, as demonstrated in accompanying and elsewhere published studies.


2006 ◽  
Vol 3 (4) ◽  
pp. 244 ◽  
Author(s):  
Aurélie Colomb ◽  
Jonathan Williams ◽  
John Crowley ◽  
Valérie Gros ◽  
Rolf Hofmann ◽  
...  

Environmental Context. In the upper troposphere, sources of HOx such as acetone, peroxides, and aldehydes can play an important role in governing the production and destruction of ozone. Convection (over both land and sea) carries gases that can contribute to increased levels of HOx to the upper troposphere. The chemical impact of convection on the continental upper troposphere over Europe is studied by sampling the upper troposphere. Mass spectrometry techniques are used to analyze the collected samples. Such a study should aid in understanding the impact meteorological events have on atmospheric chemistry. Abstract. The volume mixing ratios of several organic trace gases and ozone (O3) were measured in the upper troposphere over Europe during the UTOPIHAN-ACT aircraft campaign in July 2003. The organic trace gases included alkanes, isoprene, aromatics, iodomethane, and trichloroethylene, oxygenates such as acetone, methanol, formaldehyde, carbon monoxide, and longer-lived tracer species such as chlorofluorocarbons and halochloroflurocarbons. The aim of the UTOPIHAN-ACT project was to study the chemical impact of deep convection on the continental upper troposphere. A Lear Jet aircraft, based in Germany, was flown at heights between 6 and 13 km in the region 59°N–42°N to 7°W–13°E during July 2003. Overall, the convectively influenced measurements presented here show a weaker variability lifetime dependence of trace gases than similar measurements collected over the Mediterranean region under more stable high-pressure conditions. Several cases of convective outflow are identified by the elevated mixing ratios of organic species relative to quiescent background conditions, with both biogenic and anthropogenic influences detectable in the upper troposphere. Enhancement at higher altitudes, notably of species with relatively short chemical lifetimes such as benzene, toluene, and even isoprene indicates deep convection over short timescales during summertime. The impact of deep convection on the local upper tropospheric formaldehyde and HOx budgets is assessed.


2012 ◽  
Vol 12 (3) ◽  
pp. 1497-1513 ◽  
Author(s):  
X. Li ◽  
T. Brauers ◽  
R. Häseler ◽  
B. Bohn ◽  
H. Fuchs ◽  
...  

Abstract. We performed measurements of nitrous acid (HONO) during the PRIDE-PRD2006 campaign in the Pearl River Delta region 60 km north of Guangzhou, China, for 4 weeks in June 2006. HONO was measured by a LOPAP in-situ instrument which was setup in one of the campaign supersites along with a variety of instruments measuring hydroxyl radicals, trace gases, aerosols, and meteorological parameters. Maximum diurnal HONO mixing ratios of 1–5 ppb were observed during the nights. We found that the nighttime build-up of HONO can be attributed to the heterogeneous NO2 to HONO conversion on ground surfaces and the OH + NO reaction. In addition to elevated nighttime mixing ratios, measured noontime values of ≈200 ppt indicate the existence of a daytime source higher than the OH + NO→HONO reaction. Using the simultaneously recorded OH, NO, and HONO photolysis frequency, a daytime additional source strength of HONO (PM) was calculated to be 0.77 ppb h−1 on average. This value compares well to previous measurements in other environments. Our analysis of PM provides evidence that the photolysis of HNO3 adsorbed on ground surfaces contributes to the HONO formation.


2015 ◽  
Vol 15 (13) ◽  
pp. 7667-7684 ◽  
Author(s):  
Fuqing Zhang ◽  
Junhong Wei ◽  
Meng Zhang ◽  
K. P. Bowman ◽  
L. L. Pan ◽  
...  

Abstract. This study analyzes in situ airborne measurements from the 2008 Stratosphere–Troposphere Analyses of Regional Transport (START08) experiment to characterize gravity waves in the extratropical upper troposphere and lower stratosphere (ExUTLS). The focus is on the second research flight (RF02), which took place on 21–22 April 2008. This was the first airborne mission dedicated to probing gravity waves associated with strong upper-tropospheric jet–front systems. Based on spectral and wavelet analyses of the in situ observations, along with a diagnosis of the polarization relationships, clear signals of mesoscale variations with wavelengths ~ 50–500 km are found in almost every segment of the 8 h flight, which took place mostly in the lower stratosphere. The aircraft sampled a wide range of background conditions including the region near the jet core, the jet exit and over the Rocky Mountains with clear evidence of vertically propagating gravity waves of along-track wavelength between 100 and 120 km. The power spectra of the horizontal velocity components and potential temperature for the scale approximately between ~ 8 and ~ 256 km display an approximate −5/3 power law in agreement with past studies on aircraft measurements, while the fluctuations roll over to a −3 power law for the scale approximately between ~ 0.5 and ~ 8 km (except when this part of the spectrum is activated, as recorded clearly by one of the flight segments). However, at least part of the high-frequency signals with sampled periods of ~ 20–~ 60 s and wavelengths of ~ 5–~ 15 km might be due to intrinsic observational errors in the aircraft measurements, even though the possibilities that these fluctuations may be due to other physical phenomena (e.g., nonlinear dynamics, shear instability and/or turbulence) cannot be completely ruled out.


2015 ◽  
Vol 8 (6) ◽  
pp. 2473-2489 ◽  
Author(s):  
J. Ungermann ◽  
J. Blank ◽  
M. Dick ◽  
A. Ebersoldt ◽  
F. Friedl-Vallon ◽  
...  

Abstract. The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) is an airborne infrared limb imager combining a two-dimensional infrared detector with a Fourier transform spectrometer. It was operated aboard the new German Gulfstream G550 High Altitude LOng Range (HALO) research aircraft during the Transport And Composition in the upper Troposphere/lowermost Stratosphere (TACTS) and Earth System Model Validation (ESMVAL) campaigns in summer 2012. This paper describes the retrieval of temperature and trace gas (H2O, O3, HNO3) volume mixing ratios from GLORIA dynamics mode spectra that are spectrally sampled every 0.625 cm−1. A total of 26 integrated spectral windows are employed in a joint fit to retrieve seven targets using consecutively a fast and an accurate tabulated radiative transfer model. Typical diagnostic quantities are provided including effects of uncertainties in the calibration and horizontal resolution along the line of sight. Simultaneous in situ observations by the Basic Halo Measurement and Sensor System (BAHAMAS), the Fast In-situ Stratospheric Hygrometer (FISH), an ozone detector named Fairo, and the Atmospheric chemical Ionization Mass Spectrometer (AIMS) allow a validation of retrieved values for three flights in the upper troposphere/lowermost stratosphere region spanning polar and sub-tropical latitudes. A high correlation is achieved between the remote sensing and the in situ trace gas data, and discrepancies can to a large extent be attributed to differences in the probed air masses caused by different sampling characteristics of the instruments. This 1-D processing of GLORIA dynamics mode spectra provides the basis for future tomographic inversions from circular and linear flight paths to better understand selected dynamical processes of the upper troposphere and lowermost stratosphere.


2017 ◽  
Author(s):  
Florian Berkes ◽  
Patrick Neis ◽  
Martin G. Schultz ◽  
Ulrich Bundke ◽  
Susanne Rohs ◽  
...  

Abstract. Despite several studies on temperature trends in the tropopause region, a comprehensive understanding of the evolution of temperatures in this climate-sensitive region of the atmosphere remains elusive. Here we present a unique global-scale, long-term data set of high-resolution in-situ temperature data measured aboard passenger aircraft within the European Research Infrastructure IAGOS (In-service Aircraft for a Global Observing System, www.iagos.org). This data set is used to investigate temperature trends within the global upper troposphere and lowermost stratosphere (UTLS) for the period 1995 to 2012 in different geographical regions and vertical layers of the UTLS. The largest amount of observations is available over the North Atlantic. Here, a neutral temperature trend is found within the lowermost stratosphere. This contradicts the temperature trend in the European Centre for Medium Range Weather Forecast (ECMWF) ERA-Interim reanalysis, where a significant (95 % confidence) temperature increase of +0.56 K/decade is obtained. Differences between trends derived from observations and reanalysis data can be traced back to changes in the temperature bias between observation and model data over the studied period. This study demonstrates the value of the IAGOS temperature observations as anchor point for the evaluation of reanalyses and its suitability for independent trend analyses.


Sign in / Sign up

Export Citation Format

Share Document