scholarly journals New particle formation during α- and β-pinene oxidation by O<sub>3</sub>, OH and NO<sub>3</sub>, and the influence of water vapour: particle size distribution studies

2002 ◽  
Vol 2 (2) ◽  
pp. 469-506 ◽  
Author(s):  
B. Bonn ◽  
G. K. Moortgat

Abstract. New particle formation during the oxidation of a- and b-pinene (C10H16) by ozone, OH and NO3 was studied by measuring the particle size distributions with a scanning mobility particle sizer (TSI 3936). The results indicate a drastically higher nucleation potential of the ozonolysis than in the reaction with either OH or NO3. On the contrary, the contribution of the individual oxidation reactions to form new aerosol volume was found to depend on the location of the carbon double bond to be oxidized: for the endocyclic a-pinene reactions the ozonolysis contributed mostly to the aerosol volume yield, whereas for the exocyclic b-pinene reactions the oxidation by O3, OH and NO3 yielded a similar aerosol volume. In a second part of this study the influence of water vapour on the nucleation in all three possible oxidation routes was examined. The observations revealed only an effect of water vapour during the ozonolysis reactions.

2002 ◽  
Vol 2 (3) ◽  
pp. 183-196 ◽  
Author(s):  
B. Bonn ◽  
G. K. Moorgat

Abstract. New particle formation during the oxidation of a- and b-pinene (C10H16) by ozone, OH and NO3 was studied by measuring the particle size distributions with a scanning mobility particle sizer (TSI 3936). The results indicate a drastically higher nucleation potential of the ozonolysis than in the reaction with either OH or NO3. On the contrary, the contribution of the individual oxidation reactions to form new aerosol volume was found to depend on the location of the carbon double bond to be oxidised: for the endocyclic a-pinene reactions the ozonolysis contributed mostly to the aerosol volume yield, whereas for the exocyclic  b-pinene reactions the oxidation by O3, OH and NO3 yielded a similar aerosol volume. In a second part of this study the influence of water vapour on the nucleation in all three possible oxidation routes was examined. The observations revealed only an effect of water vapour during the ozonolysis reactions.


2015 ◽  
Vol 15 (4) ◽  
pp. 1769-1781 ◽  
Author(s):  
S. Xiao ◽  
M. Y. Wang ◽  
L. Yao ◽  
M. Kulmala ◽  
B. Zhou ◽  
...  

Abstract. Particle size distributions in the range of 1.34–615 nm were recorded from 25 November 2013 to 25 January 2014 in urban Shanghai, using a combination of one nano condensation nucleus counter system, one nano scanning mobility particle sizer (SMPS), and one long-SMPS. Measurements of sulfur dioxide by an SO2 analyzer with pulsed UV fluorescence technique allowed calculation of sulfuric acid proxy. In addition, concentrations of ammonia were recorded with a differential optical absorption spectroscopy. During this 62-day campaign, 13 new particle formation (NPF) events were identified with strong bursts of sub-3 nm particles and subsequent fast growth of newly formed particles. The observed nucleation rate (J1.34), formation rate of 3 nm particles (J3), and condensation sink were 112.4–271.0 cm−3 s−1, 2.3–19.2 cm−3 s−1, and 0.030–0.10 s−1, respectively. Subsequent cluster/nanoparticle growth (GR) showed a clear size dependence, with average values of GR1.35~1.39, GR1.39~1.46, GR1.46~1.70, GR1.70~2.39, GR2.39~7, and GR7~20 being 1.6±1.0, 1.4±2.2, 7.2±7.1, 9.0±11.4, 10.9±9.8, and 11.4±9.7 nm h−1, respectively. Correlation between nucleation rate (J1.34) and sulfuric acid proxy indicates that nucleation rate J1.34 was proportional to a 0.65±0.28 power of sulfuric acid proxy, indicating that the nucleation of particles can be explained by the activation theory. Correlation between nucleation rate (J1.34) and gas-phase ammonia suggests that ammonia was associated with NPF events. The calculated sulfuric acid proxy was sufficient to explain the subsequent growth of 1.34–3 nm particles, but its contribution became smaller as the particle size grew. Qualitatively, NPF events in urban Shanghai likely occur on days with low levels of aerosol surface area, meaning the sulfuric acid proxy is only a valid predictor when aerosol surface area is low.


2019 ◽  
Vol 19 (18) ◽  
pp. 11985-12006 ◽  
Author(s):  
Peter J. Marinescu ◽  
Ezra J. T. Levin ◽  
Don Collins ◽  
Sonia M. Kreidenweis ◽  
Susan C. van den Heever

Abstract. A quality-controlled, 5-year dataset of aerosol number size distributions (particles with diameters (Dp) from 7 nm through 14 µm) was developed using observations from a scanning mobility particle sizer, aerodynamic particle sizer, and a condensation particle counter at the Department of Energy's Southern Great Plains (SGP) site. This dataset was used for two purposes. First, typical characteristics of the aerosol size distribution (number, surface area, and volume) were calculated for the SGP site, both for the entire dataset and on a seasonal basis, and size distribution lognormal fit parameters are provided. While the median size distributions generally had similar shapes (four lognormal modes) in all the seasons, there were some significant differences between seasons. These differences were most significant in the smallest particles (Dp<30 nm) and largest particles (Dp>800 nm). Second, power spectral analysis was conducted on this long-term dataset to determine key temporal cycles of total aerosol concentrations, as well as aerosol concentrations in specified size ranges. The strongest cyclic signal was associated with a diurnal cycle in total aerosol number concentrations that was driven by the number concentrations of the smallest particles (Dp<30 nm). This diurnal cycle in the smallest particles occurred in all seasons in ∼50 % of the observations, suggesting a persistent influence of new particle formation events on the number concentrations observed at the SGP site. This finding is in contrast with earlier studies that suggest new particle formation is observed primarily in the springtime at this site. The timing of peak concentrations associated with this diurnal cycle was shifted by several hours depending on the season, which was consistent with seasonal differences in insolation and boundary layer processes. Significant diurnal cycles in number concentrations were also found for particles with Dp between 140 and 800 nm, with peak concentrations occurring in the overnight hours, which were primarily associated with both nitrate and organic aerosol cycles. Weaker cyclic signals were observed for longer timescales (days to weeks) and are hypothesized to be related to the timescales of synoptic weather variability. The strongest periodic signals (3.5–5 and 7 d cycles) for these longer timescales varied depending on the season, with no cyclic signals and the lowest variability in the summer.


2012 ◽  
Vol 12 (17) ◽  
pp. 8021-8036 ◽  
Author(s):  
P. Crippa ◽  
T. Petäjä ◽  
H. Korhonen ◽  
G. S. El Afandi ◽  
S. C. Pryor

Abstract. New particle formation has been observed at a number of ground-based measurement sites. Prior research has provided evidence that this new particle formation, while observed in the near-surface layer, is actually occurring in atmospheric layers above the surface and appears to be focused in or close to the residual layer formed by the nocturnal inversion. Here, we present both observations and modeling for southern Indiana which support this postulate. Based on simulations with a detailed aerosol dynamics model and the Weather Research and Forecasting model, along with data from ground-based remote sensing instruments and detailed gas and particle phase measurements, we show evidence that (i) the maximum rate change of ultrafine particle concentrations as observed close to the surface is always preceded by breakdown of the nocturnal inversion and enhancement of vertical mixing and (ii) simulated particle size distributions exhibit greatest accord with surface observations during and subsequent to nucleation only when initialized with a particle size distribution representative of clear atmospheric conditions, rather than the in situ (ground-level) particle size distribution.


2010 ◽  
Vol 136 (649) ◽  
pp. 944-961 ◽  
Author(s):  
Justin R. Peter ◽  
Steven T. Siems ◽  
Jørgen B. Jensen ◽  
John L. Gras ◽  
Yutaka Ishizaka ◽  
...  

2019 ◽  
Author(s):  
Sophia Brilke ◽  
Nikolaus Fölker ◽  
Thomas Müller ◽  
Konrad Kandler ◽  
Xianda Gong ◽  
...  

Abstract. Atmospheric particle size distributions were measured in Paphos, Cyprus, during the A-LIFE (Absorbing aerosol layers in a changing climate: aging, lifetime and dynamics) field experiment from April 3–30, 2017. The newly developed DMA-train is deployed for the first time in an atmospheric environment for the direct measurement of the nucleation mode size range between 1.8–10 nm diameter. The DMA-train setup consists of seven size channels, of which five are set to fixed particle mobility diameters and two additional diameters are obtained by alternating voltage settings in one DMA every 10 s. In combination with a conventional Mobility Particle Size Spectrometer (MPSS) and an Aerodynamic Particle Sizer (APS) the complete atmospheric aerosol size distribution from 1.8 nm–10 µm is covered. The focus of the A-LIFE study is to characterize new particle formation (NPF) in the Eastern Mediterranean region at a measurement site with strong local pollution sources. The nearby Paphos airport was found to be a large emission source for nucleation mode particles and we analysed the size distribution of the airport emission plumes at approximately 500 m from the main runway. The analysis yielded 9 NPF events in 27 measurement days from the combined analysis of the DMA-train, MPSS and trace gas monitors. Growth rate calculations were performed and a size-dependency of the initial growth rate (


2020 ◽  
Author(s):  
Nikolay Romanov ◽  
Alexey Paley ◽  
Yuri Andreev ◽  
Sergey Dubtsov ◽  
Oleg Ozols ◽  
...  

Abstract. The paper reports on an investigation of nanometre-sized new particles formation (NPF) in aerosol-free outdoor air. This phenomenon was observed after filling of Large Aerosol Chamber (LAC) RPA Typhoon with the volume of 3200 m3 with outdoor air, passed through HEPA 13 class filter (H13). During the summer-autumn period of 2018, even in the full darkness and in presence ionizing radiation only in the shape of secondary galactic cosmic rays, new particle formation with the particle size greater than 15 nm starts 0.5–1 hour after the end of LAC filling. During the 2018–2019 winter periods the NPF event was not observed once only. Approximately one day after NPF narrow bell-shaped spectra with number concentration up to 104 cm−3 and mass concentration up to 0.6 µg per m3 are formed. During the next five or more days, these size distributions evolve due to coagulation, while their asymptotic shape remains constant with relative breadth σc ≈ 0.28, and relative asymmetry ras ≈ 2 (ras = skewness/σc). The value ras ≈ 2 defines the analytical description of the size distribution as the gamma-distribution. During additional purification of newly formed particles with the inner H13 filter, aerosol particles concentration in LAC decreases down to a few particles per cm3. This concentration remained constant for more than a week. This demonstrates that new aerosol particles are formed by homogeneous gas-to-particle conversion of gaseous precursors, which passed through the external H13 filter. The mass concentration of newly formed particles depends on the concentration of precursors. It was found that after filling LAC with outdoor unfiltered air, approximately after 10 hours the left-hand side of aerosol particle size distribution below 15 nm disappears, and after several days there forms an asymptotic bell-shaped size spectrum with σc ≈ 0.4–0.5 and ras = 2–3. The modal diameter becomes about 150 nm after five days, while the size distribution greater than 200 nm remains unchanged. This allows concluding that aerosol particles greater than 200 nm have a life-time of more than five days, while particles smaller than 15 nm, not more than five hours. The observed regularities of NPF and pre-existing aerosol spectra evolution may contribute significantly to understanding the processes of the formation of atmospheric aerosols, which are responsible for cloud and precipitation formation. They also should be considered during the design of purification methods for facilities and living spaces. During the investigation of size distribution evolution of aerosol particles generated by the spraying of tap water, it was found that this aerosol particles size distribution transforms from a power law to a bell-shaped distribution in five days with σc ≈ 0.4 and ras ≈ 2. These results may be used for the development of aerosol evolution models.


2014 ◽  
Vol 14 (20) ◽  
pp. 27945-27971
Author(s):  
F. Salimi ◽  
L. R. Crilley ◽  
S. Stevanovic ◽  
Z. Ristovski ◽  
M. Mazaheri ◽  
...  

Abstract. The role of different chemical compounds, particularly organics, involved in the new particle formation (NPF) and its consequent growth are not fully understood. Therefore, this study was conducted to investigate the chemistry of aerosol particles during NPF events in an urban subtropical environment. Aerosol chemical composition was measured along with particle number size distribution (PNSD) and several other air quality parameters at five sites across an urban subtropical environment. An Aerodyne compact Time-of-Flight Aerosol Mass Spectrometer (c-TOF-AMS) and a TSI Scanning Mobility Particle Sizer (SMPS) measured aerosol chemical composition and PNSD, respectively. Five NPF events, with growth rates in the range 3.3–4.6 nm, were detected at two sites. The NPF events happened on relatively warmer days with lower humidity and higher solar radiation. Temporal percent fractions of nitrate, sulphate, ammonium and organics were modelled using the Generalised Additive Model (GAM), with a basis of penalised spline. Percent fractions of organics increased after the NPF events, while the mass fraction of ammonium and sulphate decreased. This uncovered the important role of organics in the growth of newly formed particles. Three organic markers, factors f43, f44 and f57, were calculated and the f44 vs. f43 trends were compared between nucleation and non-nucleation days. f44 vs. f43 followed a different pattern on nucleation days compared to non-nucleation days, whereby f43 decreased for vehicle emission generated particles, while both f44 and f43 decreased for NPF generated particles. It was found for the first time that vehicle generated and newly formed particles cluster in different locations on f44 vs. f43 plot and this finding can be used as a~tool for source apportionment of measured particles.


2016 ◽  
Vol 16 (2) ◽  
pp. 1123-1138 ◽  
Author(s):  
Z. J. Wu ◽  
J. Zheng ◽  
D. J. Shang ◽  
Z. F. Du ◽  
Y. S. Wu ◽  
...  

Abstract. Simultaneous measurements of particle number size distribution, particle hygroscopic properties, and size-resolved chemical composition were made during the summer of 2014 in Beijing, China. During the measurement period, the mean hygroscopicity parameters (κs) of 50, 100, 150, 200, and 250 nm particles were respectively 0.16  &amp;pm;  0.07, 0.19  &amp;pm;  0.06, 0.22  &amp;pm;  0.06, 0.26  &amp;pm;  0.07, and 0.28  &amp;pm;  0.10, showing an increasing trend with increasing particle size. Such size dependency of particle hygroscopicity was similar to that of the inorganic mass fraction in PM1. The hydrophilic mode (hygroscopic growth factor, HGF  >  1.2) was more prominent in growth factor probability density distributions and its dominance of hydrophilic mode became more pronounced with increasing particle size. When PM2.5 mass concentration was greater than 50 μg m−3, the fractions of the hydrophilic mode for 150, 250, and 350 nm particles increased towards 1 as PM2.5 mass concentration increased. This indicates that aged particles dominated during severe pollution periods in the atmosphere of Beijing. Particle hygroscopic growth can be well predicted using high-time-resolution size-resolved chemical composition derived from aerosol mass spectrometer (AMS) measurements using the Zdanovskii–Stokes–Robinson (ZSR) mixing rule. The organic hygroscopicity parameter (κorg) showed a positive correlation with the oxygen to carbon ratio. During the new particle formation event associated with strongly active photochemistry, the hygroscopic growth factor or κ of newly formed particles is greater than for particles with the same sizes not during new particle formation (NPF) periods. A quick transformation from external mixture to internal mixture for pre-existing particles (for example, 250 nm particles) was observed. Such transformations may modify the state of the mixture of pre-existing particles and thus modify properties such as the light absorption coefficient and cloud condensation nuclei activation.


Sign in / Sign up

Export Citation Format

Share Document