scholarly journals Anthropogenic influence on SOA and the resulting radiative forcing

2008 ◽  
Vol 8 (6) ◽  
pp. 18911-18936 ◽  
Author(s):  
C. R. Hoyle ◽  
G. Myhre ◽  
T. K. Berntsen ◽  
I. S. A. Isaksen

Abstract. The pre-industrial and present day distributions and burdens of Secondary Organic Aerosol (SOA) have been calculated using the off-line aerosol chemistry transport model Oslo CTM2. The production of SOA was found to have increased from about 43 Tg yr−1 to 69 Tg yr−1 since pre-industrial times, leading to an increase in the global annual mean SOA burden from 0.44 Tg to 0.70 Tg, or about 59%. The increases are greatest over industrialised areas, as well as over regions with high biogenic precursor emissions. The contribution of emissions from different sources to the larger SOA burdens has been calculated. The results suggest that the majority of the increase is caused by emissions of primary organic aerosols (POA), from fossil fuel and bio fuel combustion. When SOA partitioning to ammonium sulphate aerosol was not accounted for, the increase in SOA burden between pre-industrial times and the present was found to be lower (51%), with a production increase of 55%. As yet, very few radiative forcing estimates of SOA exist, and no such estimates were provided in the latest IPCC report. In this study, we find that the change in SOA burden caused a radiative forcing of −0.09 W m−2, when SOA was allowed to partition to both organic and sulphate aerosols, and −0.06 W m−2 when only partitioning to organic aerosols was assumed. Therefore, the radiative forcing of SOA is found to be substantially stronger than the best estimate for POA in the latest IPCC assessment.

2009 ◽  
Vol 9 (8) ◽  
pp. 2715-2728 ◽  
Author(s):  
C. R. Hoyle ◽  
G. Myhre ◽  
T. K. Berntsen ◽  
I. S. A. Isaksen

Abstract. The effect of chemical changes in the atmosphere since the pre-industrial period on the distributions and burdens of Secondary Organic Aerosol (SOA) has been calculated using the off-line aerosol chemistry transport model Oslo CTM2. The production of SOA was found to have increased from about 35 Tg yr−1 to 53 Tg yr−1 since pre-industrial times, leading to an increase in the global annual mean SOA burden from 0.33 Tg to 0.50 Tg, or about 51%. The effect of allowing semi-volatile species to partition to sulphate aerosol was also tested, leading to an increase in SOA production from about 43 Tg yr−1 to 69 Tg yr−1 since pre-industrial times, while the annual mean SOA burden increased from 0.44 Tg to 0.70 Tg, or about 59%. The increases were greatest over industrialised areas, especially when partitioning to sulphate aerosol was allowed, as well as over regions with high biogenic precursor emissions. The contribution of emissions from different sources to the larger SOA burdens has been calculated. The results suggest that the majority of the increase was caused by emissions of primary organic aerosols (POA), from fossil fuel and bio fuel combustion. As yet, very few radiative forcing estimates of SOA exist, and no such estimates were provided in the latest IPCC report. In this study, we found that the change in SOA burden caused a radiative forcing (defined here as the difference between the pre-industrial and the present day run) of −0.09 W m−2, when SOA was allowed to partition to both organic and sulphate aerosols, and −0.06 W m−2 when only partitioning to organic aerosols was assumed. Therefore, the radiative forcing of SOA was found to be stronger than the best estimate for POA in the latest IPCC assessment.


2009 ◽  
Vol 9 (13) ◽  
pp. 4505-4519 ◽  
Author(s):  
M. Ménégoz ◽  
D. Salas y Melia ◽  
M. Legrand ◽  
H. Teyssèdre ◽  
M. Michou ◽  
...  

Abstract. Sulphate distributions were simulated with a global chemistry transport model. A chemical scheme describing the sulphur cycle and the parameterisations of the main sinks for sulphate aerosols were included in the model. A six-year simulation was conducted from the years 2000 to 2005, driven by the ECMWF operational analyses. Emissions come from an inventory representative of the year 2000. This paper focuses on the analysis of the sulphate sinks and sources over Europe for the entire period of simulation. The Sulphate burden shows a marked annual cycle, which is the result of the annual variations of the aqueous and gaseous chemistry. Regionally, the monthly mean aerosol burden can vary by a factor of 2 from one year to another, because of different weather conditions, driving chemistry, transport and wet deposition of sulphate aerosols. Sulphate ground concentrations, scavenging fluxes and precipitation modelled were compared with observations. The model represents quite well sulphate fields over Europe, but has a general tendency to overestimate sulphate ground concentrations, in particular over Northern Europe. We assume that it is linked to the representation of the scavenging fluxes, which are underestimated. We suggest that uncertainties in modelled precipitation explain only partially the underestimation of the scavenging fluxes in the model.


2020 ◽  
Author(s):  
Roland Schrödner ◽  
Christa Genz ◽  
Bernd Heinold ◽  
Holger Baars ◽  
Silvia Henning ◽  
...  

<p>Aerosol concentrations over Europe and Germany were simulated for the years 1985 and 2013 using the aerosol-chemistry transport model COSMO-MUSCAT. The aerosol fields from the two simulations were used in a high-resolution meteorological model for a sensitivity study on cloud properties. The modelled aerosol and cloud variables were compared to a variety of available observations, including satellites, remote sensing and in-situ observations. Finally, the radiative forcing of the aerosol could be estimated from the different sensitivity simulations.</p><p>Due to reduction of emissions the ambient aerosol mass and number in Europe was strongly decreased since the 1980s. Hence, today’s number of particles in the CCN size range is smaller. The HD(CP)<sup>2</sup> (High Definition Clouds and Precipitation for Climate Prediction) project amongst others aimed at analysing the effect of the emission reduction on cloud properties.</p><p>As a pre-requiste, the aerosol mass, number, and composition over Germany were simulated for 1985 and 2013 using the regional chemistry-transport-model COSMO-MUSCAT. The EDGAR emission inventory was used for both years.</p><p>The model results were compared to observations from the two HD(CP)<sup>2</sup> campaigns that took place in 2013 (HOPE, HOPE-Melpitz) as well as the AVHRR aerosol optical thickness product, which is available from 1981 onwards. Despite the fact, that emissions of the 1980s are very uncertain, the modelled AOD is in good agreement with observations. The modelled mean CCN number concentration in 1985 is a factor of 2-4 higher than in 2013.</p><p>Within HD(CP)<sup>2</sup>, the ICON weather forecast model was applied in a configuration allowing for large-eddy simulations. In these simulations, the time-varying CCN fields for the year 1985 and 2013 calculated with COSMO-MUSCAT were used as input for ICON-LEM. In the present-day simulation, the cloud droplet number agrees with observations, whereas the perturbed (1985) simulation does not with droplet numbers about twice as high as in 2013. Also, for other cloud variables systematic changes between the two scenarios were observed.</p>


2011 ◽  
Vol 4 (2) ◽  
pp. 869-905
Author(s):  
A. Hodzic ◽  
J. L. Jimenez

Abstract. A simplified parameterization for secondary organic aerosol (SOA) formation in polluted air and biomass burning smoke is tested and optimized in this work, towards the goal of a computationally inexpensive method to calculate pollution and biomass burning SOA in global and climate models. A regional chemistry-transport model is used as the testbed for the parameterization, which is compared against observations from the Mexico City metropolitan area during the MILAGRO 2006 field experiment. The empirical parameterization is based on the observed proportionality of SOA concentrations to excess CO and photochemical age of the airmass. The approach consists in emitting an organic gas as lumped SOA precursor surrogate proportional to anthropogenic or biomass burning CO emissions according to the observed ratio between SOA and CO in aged air, and reacting this surrogate with OH into a single non-volatile species that condenses to form SOA. An emission factor of 0.08 g of the lumped SOA precursor per g of CO and a rate constant with OH of 1.25 × 10−11 cm3 molecule−1 s−1 reproduce the observed average SOA mass within 30% in the urban area and downwind. When a 2.5 times slower rate is used (5 × 10−12 cm3 molecule−1 s−1) the predicted SOA amount and temporal evolution is nearly identical to the results obtained with SOA formation from semi-volatile and intermediate volatility primary organic vapors according to the Robinson et al. (2007) formulation. Our simplified method has the advantage of being much less computationally expensive than Robinson-type methods, and can be used in regions where the emissions of SOA precursors are not yet available. As the aged pollution SOA/ΔCO ratios are rather consistent globally, this parameterization could be reasonably tested in and applied to other regions. The potential enhancement of biogenic SOA by anthropogenic pollution, which has been suggested to play a major role in global SOA formation, is also tested using two simple parameterizations. Our results suggest that the pollution enhancement of biogenic SOA could provide several μg m−3 of additional SOA, but does not however explain the concentrations or especially the spatial and temporal variations of measured SOA mass in the vicinity of Mexico City, which appears to be controlled by anthropogenic sources. The contribution of the biomass burning to the predicted SOA is less than 10% during the study period.


2012 ◽  
Vol 12 (14) ◽  
pp. 6555-6563 ◽  
Author(s):  
B. Gantt ◽  
J. Xu ◽  
N. Meskhidze ◽  
Y. Zhang ◽  
A. Nenes ◽  
...  

Abstract. A series of simulations with the Community Atmosphere Model version 5 (CAM5) with a 7-mode Modal Aerosol Model were conducted to assess the changes in cloud microphysical properties and radiative forcing resulting from marine organic aerosols. Model simulations show that the anthropogenic aerosol indirect forcing (AIF) predicted by CAM5 is decreased in absolute magnitude by up to 0.09 W m−2 (7%) when marine organic aerosols are included. Changes in the AIF from marine organic aerosols are associated with small global increases in low-level in-cloud droplet number concentration and liquid water path of 1.3 cm−3 (1.5%) and 0.22 g m−2 (0.5%), respectively. Areas especially sensitive to changes in cloud properties due to marine organic aerosol include the Southern Ocean, North Pacific Ocean, and North Atlantic Ocean, all of which are characterized by high marine organic emission rates. As climate models are particularly sensitive to the background aerosol concentration, this small but non-negligible change in the AIF due to marine organic aerosols provides a notable link for ocean-ecosystem marine low-level cloud interactions and may be a candidate for consideration in future earth system models.


2010 ◽  
Vol 2010 ◽  
pp. 1-16 ◽  
Author(s):  
Stelios Myriokefalitakis ◽  
Elisabetta Vignati ◽  
Kostas Tsigaridis ◽  
Christos Papadimas ◽  
Jean Sciare ◽  
...  

The global marine organic aerosol budget is investigated by a 3-dimensional chemistry-transport model considering recently proposed parameterisations of the primary marine organic aerosol (POA) and secondary organic aerosol (SOA) formation from the oxidation of marine volatile organic compounds. MODIS and SeaWiFS satellite data of Chlorophyll-a and ECMWF solar incoming radiation, wind speed, and temperature are driving the oceanic emissions in the model. Based on the adopted parameterisations, the SOA and the submicron POA marine sources are evaluated at about 5 Tgyr−1(∼1.5 Tg Cyr−1) and 7 to 8 Tgyr−1(∼4 Tg Cyr−1), respectively. The computed marine SOA originates from the dimethylsulfide oxidation (∼78%), the potentially formed dialkyl amine salts (∼21%), and marine hydrocarbon oxidation (∼0.1%). Comparison of calculations with observations indicates an additional marine source of soluble organic carbon that could be partially encountered by marine POA chemical ageing.


2021 ◽  
Author(s):  
Dawei Hu ◽  
M. Rami Alfarra ◽  
Kate Szpek ◽  
Justin M. Langridge ◽  
Michael Cotterell ◽  
...  

Abstract. The physical and chemical properties of black carbon (BC) and organic aerosols are important for predicting their radiative forcing in the atmosphere. During the Soot Aerodynamic Size Selection for Optical properties (SASSO) project and a EUROCHAMP-2020 transnational access project, different types of light absorbing carbon were studied, including BC from catalytically stripped diesel exhaust, a flame burner, a colloidal graphite standard (Aquadag), and from controlled flaming wood combustion. Brown carbon (BrC) was also investigated in the form of organic aerosol emissions from wood burning (pyrolysis and smouldering) and from the nitration of secondary organic aerosol (SOA) proxies produced in a photochemical reaction chamber. Here we present insights into the physical and chemical properties of the aerosols, with optical properties being presented in subsequent publications. The dynamic shape factor (χ) of BC particles and material density (ρm) of organic aerosols were investigated by coupling a charging-free Aerodynamic Aerosol Classifier (AAC) with a Centrifugal Particle Mass Analyzer (CPMA) and Scanning Mobility Particle Sizer (SMPS). The morphology of BC particles was captured by transmission electron microscopy (TEM). For BC particles from the diesel engine and flame burner emissions, the primary spherule sizes were similar, around 20 nm. With increasing particle size, BC particles adopted more collapsed/compacted morphologies for the former source but tended to show more aggregated morphologies for the latter source. For particles emitted from the combustion of dry wood samples, the χ of BC particles and the ρm of organic aerosols were observed in the ranges 1.8–2.17 and 1.22–1.32 g/cm3, respectively. Similarly, for wet wood samples, the χ and ρm ranges were 1.2–1.85 and 1.44–1.60 g/cm3, respectively. Aerosol mass spectrometry measurements show no clear difference in mass spectra of the organic aerosols in individual burn phases (pyrolysis or smouldering phase) with the moisture content of the wood samples. This implies that the effect moisture has on the organic chemical profile of wood burning emissions is through changing the durations of the different phases of the burn cycle, not through the chemical modification of the individual phases. In this study, the incandescence signal of a Single Particle Soot Photometer (SP2) was calibrated with three different types of BC particles and compared with that from an Aquadag standard that is commonly used to calibrate SP2 incandescence to a BC mass. A correction factor is defined as the ratio of the incandescence signal from an alternative BC source to that from the Aquadag standard, and took values of 0.82 (or 0.79), 0.88 and 0.84–0.91 for the BC particles emitted from the diesel engine running under hot (or cold idle) conditions, the flame burner and wood combustion, respectively. These correction factors account for differences in instrument response to BC from different sources compared to the standardised Aquadag calibration and are more appropriate than the common value of 0.75 recommended by Laborde et al. (2012b) when deriving the mass concentration of BC emitted from diesel engines. Quantifying the correction factor for many types of BC particles found commonly in the atmosphere may enable better constraints to be placed on this factor depending on the BC source being sampled, and thus improve the accuracy of future SP2 measurements of BC mass concentrations.


2012 ◽  
Vol 12 (3) ◽  
pp. 7453-7474 ◽  
Author(s):  
B. Gantt ◽  
J. Xu ◽  
N. Meskhidze ◽  
Y. Zhang ◽  
A. Nenes ◽  
...  

Abstract. In the first part of this paper series (Meskhidze et al., 2011), a treatment of marine organic aerosols (including primary organic aerosol, secondary organic aerosols, and methane sulfonate) was implemented into the Community Atmosphere Model version 5 (CAM5) with a 7-mode Modal Aerosol Module. A series of simulations was conducted to quantify the changes in aerosol and cloud condensation nuclei concentrations in the marine boundary layer. In this study, changes in the cloud microphysical properties and radiative forcing resulting from marine organic aerosols are assessed. Model simulations show that the anthropogenic aerosol indirect forcing (AIF) predicted by CAM5 is decreased in absolute magnitude by up to ~0.10 W m−2 (8%) when marine organic aerosols are included. Changes in the AIF from marine organic aerosols are associated with small global increases in low-level in-cloud droplet number concentration and liquid water path of ~1.3 cm−3 (~1.6%) and 0.2 g m−2 (0.5%), respectively. Areas especially sensitive to changes in cloud properties due to marine organic aerosol include the Southern Ocean, North Pacific Ocean, and North Atlantic Ocean, all of which are characterized by high marine organic emission rates. As climate models are particularly sensitive to the background aerosol concentration, this small but non-negligible change in the AIF due to marine organic aerosols provides a notable link for ocean-ecosystem marine low-level cloud interactions and may be a candidate for consideration in future earth system models.


2009 ◽  
Vol 9 (1) ◽  
pp. 2855-2915
Author(s):  
M. Karl ◽  
K. Tsigaridis ◽  
E. Vignati ◽  
F. Dentener

Abstract. The role of isoprene as a precursor to secondary organic aerosol (SOA) over Europe is studied with the two-way nested global chemistry transport model TM5. The inclusion of the formation of SOA from isoprene oxidation in our model almost doubles the atmospheric burden of SOA over Europe compared to SOA formation from terpenes and aromatics. The reference simulation, which considers SOA formation from isoprene, terpenes and aromatics, predicts a yearly European production rate of 1.0 Tg SOA yr−1 and an annual averaged atmospheric burden of about 50 Gg SOA over Europe. A fraction of 35% of the SOA produced in the boundary layer over Europe is transported to higher altitudes or to other world regions. Summertime measurements of particulate organic matter (POM) during the extensive EMEP OC/EC campaign 2002/2003 are better reproduced when SOA formation from isoprene is taken into account, reflecting also the strong seasonality of isoprene and other biogenic volatile organic compounds (BVOC) emissions from vegetation. However, during winter, our model strongly underestimates POM, likely caused by missing wood burning in the emission inventories. Uncertainties in the parameterisation of isoprene SOA formation have been investigated. Maximum SOA production is found for irreversible sticking (non-equilibrium partitioning) of condensable vapours on particles, with tropospheric SOA production over Europe increased by a factor of 4 in summer compared to the reference case. Completely neglecting SOA formation from isoprene results in the lowest estimate (0.51 Tg SOA yr−1). The amount and the nature of the absorbing matter are shown to be another key uncertainty when predicting SOA levels. Tropospheric isoprene SOA production over Europe in summer more than doubles when, in addition to pre-existing carbonaceous aerosols, condensation of semi volatile vapours on ammonium and sulphate aerosols is considered. Consequently, smog chamber experiments on SOA formation should be performed with different types of seed aerosols and without seed aerosols in order to derive an improved treatment of the absorption of SOA in the models. Consideration of a number of recent insights in isoprene SOA formation mechanisms reduces the tropospheric production of isoprene derived SOA over Europe from 0.4 Tg yr−1 in our reference simulation to 0.1 Tg yr−1.


Sign in / Sign up

Export Citation Format

Share Document