scholarly journals The roles of convection, extratropical mixing, and in-situ freeze-drying in the tropical tropopause layer

2008 ◽  
Vol 8 (1) ◽  
pp. 3961-4000 ◽  
Author(s):  
W. G. Read ◽  
M. J. Schwartz ◽  
A. Lambert ◽  
H. Su ◽  
N. J. Livesey ◽  
...  

Abstract. Mechanisms for transporting and dehydrating air across the tropical tropopause layer (TTL) are investigated with a conceptual two dimensional (2-D) model. The 2-D TTL model combines the Holton and Gettelman cold trap dehydration mechanism (Holton and Gettelman, 2001) with the two column convection model of Folkins and Martin (2005). We investigate 3 possible transport scenarios through the TTL: 1) slow uniform ascent across the level of zero radiative heating without direct convective mixing, 2) convective mixing of H2O vapor at 100% relative humidity with respect to ice (RHi) with no ice retention, and 3) convective mixing of extremely subsaturated air (convective dehydration) with sufficient ice retention such that total H2O is 100% RHi. The three mechanisms produce similar seasonal cycles for H2O that are in good quantitative agreement with the Aura Microwave Limb Sounder (MLS) measurements. We use Aura MLS measurement of CO and Atmospheric Chemistry Experiment-Fourier Transform Spectrometer measurement of HDO to distinguish among the transport mechanisms. Model comparisons with the observations support the view that H2O is predominantly controlled by the cold trap temperature but the trace species CO and HDO show evidence of extratropical mixing and convective mixing of subsaturated tropospheric air and lofted ice. The model provides some insight into the processes affecting the long term trends observed in stratospheric H2O.

2008 ◽  
Vol 8 (20) ◽  
pp. 6051-6067 ◽  
Author(s):  
W. G. Read ◽  
M. J. Schwartz ◽  
A. Lambert ◽  
H. Su ◽  
N. J. Livesey ◽  
...  

Abstract. Mechanisms for transporting and dehydrating air across the tropical tropopause layer (TTL) are investigated with a conceptual two dimensional (2-D) model. The 2-D TTL model combines the Holton and Gettelman cold trap dehydration mechanism (Holton and Gettelman, 2001) with the two column convection model of Folkins and Martin (2005). We investigate 3 possible transport scenarios through the TTL: 1) slow uniform ascent across the level of zero radiative heating without direct convective mixing, 2) convective mixing of H2O vapor at 100% relative humidity with respect to ice (RHi) with no ice retention, and 3) convective mixing of extremely subsaturated air (100% RHi following the moist adiabatic temperature above the level of neutral buoyancy) with sufficient ice retention such that total H2O is 100%RHi. The three mechanisms produce similar seasonal cycles for H2O that are in good quantitative agreement with the Aura Microwave Limb Sounder (MLS) measurements. We use Aura MLS measurement of CO and Atmospheric Chemistry Experiment-Fourier Transform Spectrometer measurement of HDO to distinguish among the transport mechanisms. Model comparisons with the observations support the view that H2O is predominantly controlled by regions having the lowest cold point tropopause temperature but the trace species CO and HDO support the convective mixing of dry air and lofted ice. The model provides some insight into the processes affecting the long term trends observed in stratospheric H2O.


2012 ◽  
Vol 12 (9) ◽  
pp. 25833-25885 ◽  
Author(s):  
F. Hasebe ◽  
Y. Inai ◽  
M. Shiotani ◽  
M. Fujiwara ◽  
H. Vömel ◽  
...  

Abstract. A network of balloon-born radiosonde observations employing chilled-mirror hygrometers for water and electrochemical concentration cells for ozone has been operated since late 1990s in the Tropical Pacific trying to capture the progress of dehydration for the air parcels advected horizontally in the Tropical Tropopause Layer (TTL). The analyses of this dataset are made on isentropes taking advantage of the conservative properties of tracers in adiabatic motion. The existence of ice particles is diagnosed by lidars simultaneously operated with sonde flights. Characteristics of the TTL dehydration are presented on the basis of individual soundings and statistical features. Supersaturations close to 80% in the relative humidity with respect to ice (RHice) have been observed in subvisible cirrus clouds located near the cold point tropopause at extremely low temperatures around 180 K. Further observational evidence is needed to confirm the credibility of such high values of RHice. The progress of TTL dehydration is reflected in isentropic scatter plots between the sonde-observed mixing ratio (OMR) and the minimum saturation mixing ratio (SMRmin) along the back trajectories associated with the observed air mass. The supersaturation exceeding the critical value of the homogeneous ice nucleation (OMR > 1.6 × SMRmin) is frequently observed on 360 and 365 K surfaces indicating that the cold trap dehydration is under progress in the TTL. The near correspondence between the two (OMR ~ SMRmin) on 380 K on the other hand implies that this surface is not significantly cold for the advected air parcels to be dehydrated. Above 380 K, the cold trap dehydration would scarcely function while some moistening in turn occurs before the air parcels reach the lowermost stratosphere at around 400 K where OMR is generally smaller than SMRmin.


2020 ◽  
Vol 33 (15) ◽  
pp. 5527-5542
Author(s):  
Louis Rivoire ◽  
Thomas Birner ◽  
John A. Knaff ◽  
Natalie Tourville

AbstractA ubiquitous cold signal near the tropopause, here called “tropopause layer cooling” (TLC), has been documented in deep convective regions such as tropical cyclones (TCs). Temperature retrievals from the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) reveal cooling of order 0.1–1 K day−1 on spatial scales of order 1000 km above TCs. Data from the Cloud Profiling Radar (onboard CloudSat) and from the Cloud–Aerosol Lidar with Orthogonal Polarization [onboard the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO)] are used to analyze cloud distributions associated with TCs. Evidence is found that convective clouds within TCs reach the upper part of the tropical tropopause layer (TTL) more frequently than do convective clouds outside TCs, raising the possibility that convective clouds within TCs and associated cirrus clouds modulate TLC. The contribution of clouds to radiative heating rates is then quantified using the CloudSat and CALIPSO datasets: in the lower TTL (below the tropopause), clouds produce longwave cooling of order 0.1–1 K day−1 inside the TC main convective region, and longwave warming of order 0.01–0.1 K day−1 outside; in the upper TTL (near and above the tropopause), clouds produce longwave cooling of the same order as TLC inside the TC main convective region, and up to one order of magnitude smaller outside. Considering that clouds also produce shortwave warming, it is suggested that cloud radiative effects inside and outside TCs only explain modest amounts of TLC while other processes must provide the remaining cooling.


2016 ◽  
Author(s):  
Alison Ming ◽  
Amanda C. Maycock ◽  
Peter Hitchcock ◽  
Peter Haynes

Abstract. The prominent annual cycle in temperatures (with maximum peak to peak amplitude of ~ 8 K around 70 hPa and ~ 6 K at 90 hPa) is a key feature of the tropical tropopause layer (TTL). There is also a strong annual cycle observed in both ozone and water vapour in the TTL, with the latter understood as a consequence of the temperature annual cycle. The radiative contributions of the annual cycle in ozone and water vapour to the temperature annual cycle are studied, first with a seasonally evolving fixed dynamical heating calculation (SEFDH) where the dynamical heating is assumed to be unaffected by the radiative heating. In this framework, the variations in ozone and water vapour derived from satellite data lead to variations in temperature that are respectively in phase and out of phase with the observed annual cycle. The ozone contribution is at the upper range of previous calculations. This difference in phasing can be understood from the fact that an increase in water vapour cools the TTL, predominantly through enhanced local emission, whereas an increase in ozone warms the TTL, mostly through enhanced absorption of upwelling longwave radiation from the troposphere. The relative phasing of the water vapour and ozone effects on temperature is further influenced by the fact that for water vapour there is a strong non-local effect on temperatures from variations in concentrations occurring in lower layers of the TTL. In contrast, for ozone it is the local variations in concentration that have the strongest impact on local temperature variations. The factors that determine the vertical structure of the annual cycle in temperature are also examined. Radiative damping time scales are shown to maximize over a broad layer centred on the cold point. Non-radiative processes in the upper troposphere are inferred to impose a strong constraint on temperature perturbations below 130 hPa. These effects, combined with the annual cycles in dynamical and radiative heating, which both peak above the cold point, result in a maximum amplitude of temperature response that is relatively localized around 70 hPa. Finally, the SEFDH assumption is relaxed by considering the temperature responses to ozone and water vapour variations in a zonally symmetric dynamical model. While the magnitude of the tropical averaged temperature annual cycle in this framework is found to be consistent with the SEFDH results, the effects of the dynamical adjustment act to reduce the strong latitudinal gradients and inter-hemispheric asymmetry in the temperature response. This results in a temperature response that shows a considerably smoother structure than inferred from the SEFDH model. Whilst precise numerical values are likely to be sensitive to changes in the details of radiation code and of ozone and water vapour concentrations, the net contribution to the annual cycle in temperature from both ozone and water vapour averaged between 20° N–S, calculated in this work, is substantial and around 35 % of the observed peak to peak amplitude at both 70 hPa and 90 hPa.


2012 ◽  
Vol 12 (3) ◽  
pp. 1213-1228 ◽  
Author(s):  
S. Brinckmann ◽  
A. Engel ◽  
H. Bönisch ◽  
B. Quack ◽  
E. Atlas

Abstract. We conducted measurements of the five important short-lived organic bromine species in the marine boundary layer (MBL). Measurements were made in the Northern Hemisphere mid-latitudes (Sylt Island, North Sea) in June 2009 and in the tropical Western Pacific during the TransBrom ship campaign in October 2009. For the one-week time series on Sylt Island, mean mixing ratios of CHBr3, CH2Br2, CHBr2Cl and CH2BrCl were 2.0, 1.1, 0.2, 0.1 ppt, respectively. We found maxima of 5.8 and 1.6 ppt for the two main components CHBr3 and CH2Br2. Along the cruise track in the Western Pacific (between 41° N and 13° S) we measured mean mixing ratios of 0.9, 0.9, 0.2, 0.1 and 0.1 ppt for CHBr3, CH2Br2, CHBrCl2, CHBr2Cl and CH2BrCl. Air samples with coastal influence showed considerably higher mixing ratios than the samples with open ocean origin. Correlation analyses of the two data sets yielded strong linear relationships between the mixing ratios of four of the five species (except for CH2BrCl). Using a combined data set from the two campaigns and a comparison with the results from two former studies, rough estimates of the molar emission ratios between the correlated substances were: 9/1/0.35/0.35 for CHBr3/CH2Br2/CHBrCl2/CHBr2Cl. Additional measurements were made in the tropical tropopause layer (TTL) above Teresina (Brazil, 5° S) in June 2008, using balloon-borne cryogenic whole air sampling technique. Near the level of zero clear-sky net radiative heating (LZRH) at 14.8 km about 2.25 ppt organic bromine was bound to the five short-lived species, making up 13% of total organic bromine (17.82 ppt). CH2Br2 (1.45 ppt) and CHBr3 (0.56 ppt) accounted for 90% of the budget of short-lived compounds in that region. Near the tropopause (at 17.5 km) organic bromine from these substances was reduced to 1.35 ppt, with 1.07 and 0.12 ppt attributed to CH2Br2 and CHBr3, respectively.


2006 ◽  
Vol 6 (12) ◽  
pp. 4755-4761 ◽  
Author(s):  
B.-M. Sinnhuber ◽  
I. Folkins

Abstract. The contribution of bromoform to the stratospheric bromine loading is estimated using the one-dimensional tropical mean model of Folkins and Martin (2005), which is constrained by observed mean profiles of temperature and humidity. In order to reach the stratosphere, bromoform needs to be lifted by deep convection into the tropical tropopause layer (TTL), above the level of zero radiative heating. The contribution of bromoform to stratospheric bromine then depends critically on the rate of removal of the degradation products of bromoform (collectively called Bry here) from the TTL, which is believed to be due to scavenging by falling ice. This relates the transport of short-lived bromine species into the stratosphere to processes of dehydration in the TTL. In the extreme case of dehydration occurring only through overshooting deep convection, the loss of Bry from the TTL may be negligible and consequently bromoform will fully contribute with its boundary layer mixing ratio to the stratospheric bromine loading, i.e. with 3 pptv for an assumed 1 pptv of bromoform in the boundary layer. For the other extreme that Bry is removed from the TTL almost instantaneously, the model calculations predict a contribution of about 0.5 pptv for the assumed 1 pptv of boundary layer bromoform. While this gives some constraints on the contribution of bromoform to stratospheric bromine, a key uncertainty in estimating the contribution of short-lived bromine source gases to the stratospheric bromine loading is the mechanism and rate of removal of Bry within the TTL.


2006 ◽  
Vol 6 (4) ◽  
pp. 6903-6931
Author(s):  
F. Hasebe ◽  
M. Fujiwara ◽  
N. Nishi ◽  
M. Shiotani ◽  
H. Vömel ◽  
...  

Abstract. Water vapor sonde observations were conducted at Bandung, Indonesia (6.90 S, 107.60 E) and Tarawa, Kiribati (1.35 N, 172.91 E) in December 2003 to examine the efficiency of the "cold trap'' dehydration in the tropical tropopause layer (TTL). Trajectory analysis based on bundles of trajectories suggest that the modification of air parcels' identity due to irreversible mixing by the branching-out and merging-in of nearby trajectories is found to be an important factor, in addition to the routes air parcels are supposed to follow, for interpreting the water vapor concentrations observed by radiosondes in the TTL. Clear correspondence between the observed water vapor concentration and the estimated temperature history of air parcels is found showing that dry air parcels are exposed to low temperatures while humid air parcels do not experience cold conditions during advection, in support of the "cold trap'' hypothesis. It is suggested that the observed air parcel retained the water vapor by roughly twice as much as the minimum saturation mixing ratio after its passage through the "cold trap,'' although appreciable uncertainties remain.


2011 ◽  
Vol 11 (8) ◽  
pp. 22199-22245 ◽  
Author(s):  
S. Brinckmann ◽  
A. Engel ◽  
H. Bönisch ◽  
B. Quack ◽  
E. Atlas

Abstract. We conducted measurements of up to the five important short-lived brominated species in the marine boundary layer (MBL) of the mid-latitudes (List/Sylt, North Sea) in June 2009 and of the tropical Western Pacific during the TransBrom ship campaign in October 2009. For the one-week time series in List mean mixing ratios of 2.0, 1.1, 0.2, 0.1 ppt were analysed for CHBr3, CH2Br2, CHBr2Cl and CH2BrCl, with maxima of 5.8 and 1.6 ppt for the two main components CHBr3 and CH2Br2. Along the cruise track in the Western Pacific (between 41° N and 13° S) mean mixing ratios of 1.0, 0.9, 0.2, 0.1 and 0.1 ppt for CHBr3, CH2Br2, CHBrCl2, CHBr2Cl and CH2BrCl were determined. Air samples with coastal influence showed considerably higher mixing ratios than the samples with open ocean origin. Correlation analyses of the two datasets yielded strong linear relationships between the mixing ratios of four of the five species (except for CH2BrCl). Using a combined dataset from the two campaigns, rough estimates of the molar emission ratios between the correlated substances were derived as follows: 9/1/0.3/0.3 for CHBr3/CH2Br2/CHBrCl2/CHBr2Cl. Additional measurements were made in the tropical tropopause layer (TTL) above Teresina (Brazil, 5.07° S, 42.87° W) in June 2008, using balloon-borne cryogenic whole air sampling technique. Near the level of zero clear-sky net radiative heating (LZRH) at 14.8 km about 2.25 ppt organic bromine was bound to the five short-lived species, making up 13 % of total organic bromine (17.82 ppt). CH2Br2 (1.45 ppt) and CHBr3 (0.56 ppt) accounted for 90 % of the budget of short-lived compounds in that region. Near the tropopause (at 17.5 km) organic bromine from short-lived substances was reduced to 1.35 ppt, with 1.07 ppt and 0.12 ppt attributed to CH2Br2 and CHBr3 respectively.


2008 ◽  
Vol 8 (4) ◽  
pp. 813-823 ◽  
Author(s):  
K. Krüger ◽  
S. Tegtmeier ◽  
M. Rex

Abstract. A long-term climatology of air mass transport through the tropical tropopause layer (TTL) is presented, covering the period from 1962–2005. The transport through the TTL is calculated with a Lagrangian approach using radiative heating rates as vertical velocities in an isentropic trajectory model. We demonstrate the improved performance of such an approach compared to previous studies using vertical winds from meteorological analyses. Within the upper part of the TTL, the averaged diabatic ascent is 0.5 K/day during Northern Hemisphere (NH) winters 1992–2001. Climatological maps show a cooling and strengthening of this part of the residual circulation during the 1990s and early 2000s compared to the long-term mean. Lagrangian cold point (LCP) fields show systematic differences for varying time periods and natural forcing components. The interannual variability of LCP temperature and density fields is found to be influenced by volcanic eruptions, El Niño Southern Oscillation (ENSO), Quasi-Biennial Oscillation (QBO) and the solar cycle. The coldest and driest TTL is reached during QBO easterly phase and La Niña over the western Pacific, whereas during volcanic eruptions, El Niño and QBO westerly phase it is warmer and less dry.


2013 ◽  
Vol 13 (8) ◽  
pp. 4393-4411 ◽  
Author(s):  
F. Hasebe ◽  
Y. Inai ◽  
M. Shiotani ◽  
M. Fujiwara ◽  
H. Vömel ◽  
...  

Abstract. A network of balloon-borne radiosonde observations employing chilled-mirror hygrometers for water and electrochemical concentration cells for ozone has been operated since the late 1990s in the Tropical Pacific to capture the evolution of dehydration of air parcels advected quasi-horizontally in the Tropical Tropopause Layer (TTL). The analysis of this dataset is made on isentropes taking advantage of the conservative properties of tracers moving adiabatically. The existence of ice particles is diagnosed by lidars simultaneously operated with sonde flights. Characteristics of the TTL dehydration are presented on the basis of individual soundings and statistical features. Supersaturations close to 80% in relative humidity with respect to ice (RHice) have been observed in subvisible cirrus clouds located near the cold point tropopause at extremely low temperatures around 180 K. Although further observational evidence is needed to confirm the credibility of such high values of RHice, the evolution of TTL dehydration is evident from the data in isentropic scatter plots between the sonde-observed mixing ratio (OMR) and the minimum saturation mixing ratio (SMRmin) along the back trajectories associated with the observed air mass. Supersaturation exceeding the critical value of homogeneous ice nucleation (OMR > 1.6 × SMRmin) is frequently observed on the 360 and 365 K surfaces indicating that cold trap dehydration is in progress in the TTL. The near correspondence between the two (OMR ~ SMRmin) at 380 K on the other hand implies that this surface is not sufficiently cold for the advected air parcels to be dehydrated. Above 380 K, cold trap dehydration would scarcely function while some moistening occurs before the air parcels reach the lowermost stratosphere at around 400 K where OMR is generally smaller than SMRmin.


Sign in / Sign up

Export Citation Format

Share Document