scholarly journals Depositional ice nucleation on solid ammonium sulfate and glutaric acid particles

2009 ◽  
Vol 9 (5) ◽  
pp. 20949-20977 ◽  
Author(s):  
K. J. Baustian ◽  
M. E. Wise ◽  
M. A. Tolbert

Abstract. Heterogeneous ice nucleation on solid ammonium sulfate and solid amorphous glutaric acid particles was studied using optical microscopy and Raman spectroscopy. Optical microscopy was used to detect selective nucleation events as water vapor was slowly introduced into an environmental sample cell. Particles that nucleated ice were dried via sublimation and examined in detail using Raman spectroscopy. Depositional ice nucleation occurred preferentially on just a few ammonium sulfate and glutaric acid particles in each sample. For freezing temperatures between 214 K and 235 K average ice saturation ratios of S=1.10±0.07 for solid ammonium sulfate and S=1.39±0.16 for solid amorphous glutaric acid particles were determined. Experiments with externally mixed particles further show that ammonium sulfate is a more potent ice nucleus that glutaric acid. Our results suggest that heterogeneous nucleation on ammonium sulfate may be an important pathway for atmospheric ice nucleation and cirrus cloud formation when solid aerosol particles are available for ice formation. This pathway for ice formation may be particularly significant near the tropopause region where sulfates are abundant and other species known to be good ice nuclei are depleted.

2010 ◽  
Vol 10 (5) ◽  
pp. 2307-2317 ◽  
Author(s):  
K. J. Baustian ◽  
M. E. Wise ◽  
M. A. Tolbert

Abstract. Heterogeneous ice nucleation on solid ammonium sulfate and glutaric acid particles was studied using optical microscopy and Raman spectroscopy. Optical microscopy was used to detect selective nucleation events as water vapor was slowly introduced into an environmental sample cell. Particles that nucleated ice were dried via sublimation and examined in detail using Raman spectroscopy. Depositional ice nucleation is highly selective and occurred preferentially on just a few ammonium sulfate and glutaric acid particles in each sample. For freezing temperatures between 214 K and 235 K an average ice saturation ratio of S = 1.10±0.07 for solid ammonium sulfate was observed. Over the same temperature range, S values observed for ice nucleation on glutaric acid particles increased from 1.2 at 235 K to 1.6 at 218 K. Experiments with externally mixed particles further show that ammonium sulfate is a more potent ice nucleus than glutaric acid. Our results suggest that heterogeneous nucleation on ammonium sulfate may be an important pathway for atmospheric ice nucleation and cirrus cloud formation when solid ammonium sulfate aerosol particles are available for ice formation. This pathway for ice formation may be particularly significant near the tropical tropopause region where sulfates are abundant and other species known to be good ice nuclei are depleted.


2017 ◽  
Vol 200 ◽  
pp. 165-194 ◽  
Author(s):  
Joseph C. Charnawskas ◽  
Peter A. Alpert ◽  
Andrew T. Lambe ◽  
Thomas Berkemeier ◽  
Rachel E. O’Brien ◽  
...  

Anthropogenic and biogenic gas emissions contribute to the formation of secondary organic aerosol (SOA). When present, soot particles from fossil fuel combustion can acquire a coating of SOA. We investigate SOA–soot biogenic–anthropogenic interactions and their impact on ice nucleation in relation to the particles’ organic phase state. SOA particles were generated from the OH oxidation of naphthalene, α-pinene, longifolene, or isoprene, with or without the presence of sulfate or soot particles. Corresponding particle glass transition (Tg) and full deliquescence relative humidity (FDRH) were estimated using a numerical diffusion model. Longifolene SOA particles are solid-like and all biogenic SOA sulfate mixtures exhibit a core–shell configuration (i.e.a sulfate-rich core coated with SOA). Biogenic SOA with or without sulfate formed ice at conditions expected for homogeneous ice nucleation, in agreement with respectiveTgand FDRH. α-pinene SOA coated soot particles nucleated ice above the homogeneous freezing temperature with soot acting as ice nuclei (IN). At lower temperatures the α-pinene SOA coating can be semisolid, inducing ice nucleation. Naphthalene SOA coated soot particles acted as ice nuclei above and below the homogeneous freezing limit, which can be explained by the presence of a highly viscous SOA phase. Our results suggest that biogenic SOA does not play a significant role in mixed-phase cloud formation and the presence of sulfate renders this even less likely. However, anthropogenic SOA may have an enhancing effect on cloud glaciation under mixed-phase and cirrus cloud conditions compared to biogenic SOA that dominate during pre-industrial times or in pristine areas.


2012 ◽  
Vol 12 (5) ◽  
pp. 2541-2550 ◽  
Author(s):  
B. G. Pummer ◽  
H. Bauer ◽  
J. Bernardi ◽  
S. Bleicher ◽  
H. Grothe

Abstract. The ice nucleation of bioaerosols (bacteria, pollen, spores, etc.) is a topic of growing interest, since their impact on ice cloud formation and thus on radiative forcing, an important parameter in global climate, is not yet fully understood. Here we show that pollen of different species strongly differ in their ice nucleation behaviour. The average freezing temperatures in laboratory experiments range from 240 to 255 K. As the most efficient nuclei (silver birch, Scots pine and common juniper pollen) have a distribution area up to the Northern timberline, their ice nucleation activity might be a cryoprotective mechanism. Far more intriguingly, it has turned out that water, which has been in contact with pollen and then been separated from the bodies, nucleates as good as the pollen grains themselves. The ice nuclei have to be easily-suspendable macromolecules located on the pollen. Once extracted, they can be distributed further through the atmosphere than the heavy pollen grains and so presumably augment the impact of pollen on ice cloud formation even in the upper troposphere. Our experiments lead to the conclusion that pollen ice nuclei, in contrast to bacterial and fungal ice nucleating proteins, are non-proteinaceous compounds.


2019 ◽  
Author(s):  
Nsikanabasi Silas Umo ◽  
Robert Wagner ◽  
Romy Ullrich ◽  
Alexei Kiselev ◽  
Harald Saathoff ◽  
...  

Abstract. Ice-nucleating particles (INPs), which are precursors for ice formation in clouds, can alter the microphysical and optical properties of clouds, hence, impacting the cloud lifetimes and hydrological cycles. However, the mechanisms with which these INPs nucleate ice when exposed to different atmospheric conditions are still unclear for some particles. Recently, some INPs with pores or permanent surface defects of regular or irregular geometries have been reported to initiate ice formation at cirrus temperatures via the liquid phase in a two-step process, involving the condensation and freezing of supercooled water inside these pores. This mechanism has therefore been labelled as pore condensation and freezing (PCF). The PCF mechanism allows formation and stabilization of ice germs in the particle without the formation of macroscopic ice. Coal fly ash (CFA) aerosol particles are known to nucleate ice in the immersion freezing mode and may play a significant role in cloud formation. In our current ice nucleation experiments with CFA particles, which we conducted in the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) aerosol and cloud simulation chamber at the Karlsruhe Institute of Technology, Germany, we partly observed a strong increase in the ice-active fraction for experiments performed at temperatures just below the homogeneous freezing of pure water, which could be related to the PCF mechanism. To further investigate the potential of CFA particles undergoing PCF mechanism, we performed a series of temperature-cycling experiments in AIDA. The temperature-cycling experiments involve exposing CFA particles to lower temperatures (down to ~ 228 K), then warming them up to higher temperatures (238 K–273 K) before investigating their ice nucleation properties. For the first time, we report the enhancement of the ice nucleation activity of the CFA particles for temperatures up to 263 K, from which we conclude that it is most likely due to the PCF mechanism. This indicates that ice germs formed in the CFA particles’ pores during cooling remains in the pores during the warming and induces ice crystallization as soon as the pre-activated particles experience ice-supersaturated conditions at warmer temperatures; hence, showing an enhancement in their ice-nucleating ability compared to the scenario where the CFA particles are directly probed at warmer temperatures without temporary cooling. The enhancement in the ice nucleation ability showed a positive correlation with the specific surface area and porosity of the particles. On the one hand, the PCF mechanism could be the prevalent nucleation mode for intrinsic ice formation at cirrus temperatures rather than the previously acclaimed deposition mode. On the other, the PCF mechanism can also play a significant role in mixed-phase cloud formation in a case where the CFA particles are injected from higher altitudes and then transported to lower altitudes after being exposed to lower temperatures.


2012 ◽  
Vol 12 (18) ◽  
pp. 8589-8610 ◽  
Author(s):  
R. Wagner ◽  
O. Möhler ◽  
H. Saathoff ◽  
M. Schnaiter ◽  
J. Skrotzki ◽  
...  

Abstract. The ice nucleation potential of airborne glassy aqueous aerosol particles has been investigated by controlled expansion cooling cycles in the AIDA aerosol and cloud chamber of the Karlsruhe Institute of Technology at temperatures between 247 and 216 K. Four different solutes were used as proxies for oxygenated organic matter found in the atmosphere: raffinose, 4-hydroxy-3-methoxy-DL-mandelic acid (HMMA), levoglucosan, and a multi-component mixture of raffinose with five dicarboxylic acids and ammonium sulphate. Similar to previous experiments with citric acid aerosols, all particles were found to nucleate ice heterogeneously before reaching the homogeneous freezing threshold provided that the freezing cycles were started well below the respective glass transition temperatures of the compounds; this is discussed in detail in a separate article. In this contribution, we identify a further mechanism by which glassy aerosols can promote ice nucleation below the homogeneous freezing limit. If the glassy aerosol particles are probed in freezing cycles started only a few degrees below their respective glass transition temperatures, they enter the liquid regime of the state diagram upon increasing relative humidity (moisture-induced glass-to-liquid transition) before being able to act as heterogeneous ice nuclei. Ice formation then only occurs by homogeneous freezing at elevated supersaturation levels. When ice forms the remaining solution freeze concentrates and re-vitrifies. If these ice cloud processed glassy aerosol particles are then probed in a second freezing cycle at the same temperature, they catalyse ice formation at a supersaturation threshold between 5 and 30% with respect to ice. By analogy with the enhanced ice nucleation ability of insoluble ice nuclei like mineral dusts after they nucleate ice once, we refer to this phenomenon as pre-activation. We propose a number of possible explanations for why glassy aerosol particles that have re-vitrified in contact with the ice crystals during the preceding homogeneous freezing cycle exhibit pre-activation: they may retain small ice embryos in pores, have footprints on their surface which match the ice lattice, or simply have a much greater surface area or different surface microstructure compared to the unprocessed glassy aerosol particles. Pre-activation must be considered for the correct interpretation of experimental results on the heterogeneous ice nucleation ability of glassy aerosol particles and may provide a mechanism of producing a population of extremely efficient ice nuclei in the upper troposphere.


2011 ◽  
Vol 11 (8) ◽  
pp. 23139-23167 ◽  
Author(s):  
M. E. Wise ◽  
K. J. Baustian ◽  
T. Koop ◽  
M. A. Freedman ◽  
E. J. Jensen ◽  
...  

Abstract. Sea-salt aerosol particles (SSA) are ubiquitous in the marine boundary layer and over coastal areas. Therefore SSA have ability to directly and indirectly affect the Earth's radiation balance. The influence SSA have on climate is related to their water uptake and ice nucleation characteristics. In this study, optical microscopy coupled with Raman spectroscopy was used to detect the formation of an NaCl hydrate that could form under atmospheric conditions. NaCl(s) particles deliquesced at the well established value of 75.7 ± 2.5 % RH. NaCl(aq) particles effloresced to a mixture of hydrated and non-hydrated particles at temperatures between 236 and 252 K. The aqueous particles effloresced into the non-hydrated form at temperatures warmer than 252 K. At temperatures colder than 236 K all particles effloresced into the hydrated form. The deliquescence relative humidities (DRH) of hydrated NaCl(s) particles ranged from 76.6 to 93.2 % RH. Based on the measured DRH and efflorescence relative humidities (ERH), we estimate crystalline NaCl particles could be in the hydrated form 40–80 % of the time in the troposphere. Additionally, the ice nucleating abilities of NaCl(s) and hydrated NaCl(s) were determined at temperatures ranging from 221 to 238 K. NaCl(s) particles depositionally nucleated ice at an average Sice value of 1.11 ± 0.07. Hydrated NaCl(s) particles depositionally nucleated ice at an average Sice value of 1.02 ± 0.04. When a mixture of hydrated and anhydrous NaCl(s) particles was present in the same sample, ice preferentially nucleated on the hydrated particles 100 % of the time. While both types of particles are efficient ice nuclei, hydrated NaCl(s) particles are better ice nuclei than NaCl(s) particles.


2012 ◽  
Vol 12 (18) ◽  
pp. 8645-8661 ◽  
Author(s):  
A. Sesartic ◽  
U. Lohmann ◽  
T. Storelvmo

Abstract. Some bacteria are among the most active ice nuclei found in nature due to the ice nucleation active proteins on their surface, which serve as active sites for ice nucleation. Their potential impact on clouds and precipitation is not well known and needs to be investigated. Bacteria as a new aerosol species were introduced into the global climate model (GCM) ECHAM5-HAM. The inclusion of bacteria acting as ice nuclei in a GCM leads to only minor changes in cloud formation and precipitation on a global level, however, changes in the liquid water path and ice water path are simulated, specifically in the boreal regions where tundra and forests act as sources of bacteria. Although bacteria contribute to heterogeneous freezing, their impact is reduced by their low numbers compared to other heterogeneous IN. This result confirms the outcome of several previous studies.


2008 ◽  
Vol 8 (4) ◽  
pp. 15665-15698 ◽  
Author(s):  
D. Barahona ◽  
A. Nenes

Abstract. We present a parameterization of cirrus cloud formation that computes the ice crystal number and size distribution under the presence of homogeneous and heterogeneous freezing. The parameterization is very simple to apply and is derived from the analytical solution of the cloud parcel equations, assuming that the ice nuclei population is monodisperse and chemically homogeneous. In addition to the ice distribution, an analytical expression is provided for the limiting ice nuclei number concentration that suppresses ice formation from homogeneous freezing. The parameterization is evaluated against a detailed numerical parcel model, and reproduces numerical simulations over a wide range of conditions with an average error of 6±33%.


Sign in / Sign up

Export Citation Format

Share Document