scholarly journals Picturing internal fractures of historical statues using ground penetrating radar method

2010 ◽  
Vol 24 ◽  
pp. 23-34 ◽  
Author(s):  
S. Kadioglu ◽  
Y. K. Kadioglu

Abstract. The aim of the study is to formulate an approach to the monitoring of internal micro discontiniuties in a hybrid 2-D/3-D image of ground penetrating radar (GPR) data gathered on historical monument groups, and to indicate methodologically rearranging amplitude-color scale and its opacity functions to activate micro fractures in monument groups including three colossal women, three men, and 24 lion statues in Mustafa Kemal ATATÜRK's mausoleum (ANITKABIR) in Ankara, Turkey. Additionally, this paper illustrates the use of petrographic research to describe the monument and its groups. To achieve the aim, data measurements were carried out on the monument groups with spaced 10 cm profiles and 1.6 GHz antenna. The 3-D image was transparent 3-D volumes of the GPR data set that highlighted internal micro fractures and cavities in the statues. Rearranging appropriate amplitude-color scale and formulating the opaque of the data sets were the keys to the transparent 3-D data visualizations. As a result, the internal fractures and cavities were successfully visualized in the three women, three men and twenty-four lion statues. Micro fractures were observed particularly at the rim of the vesicular of the rocks under a polarizing microscope.

Geophysics ◽  
2015 ◽  
Vol 80 (2) ◽  
pp. H13-H22 ◽  
Author(s):  
Saulo S. Martins ◽  
Jandyr M. Travassos

Most of the data acquisition in ground-penetrating radar is done along fixed-offset profiles, in which velocity is known only at isolated points in the survey area, at the locations of variable offset gathers such as a common midpoint. We have constructed sparse, heavily aliased, variable offset gathers from several fixed-offset, collinear, profiles. We interpolated those gathers to produce properly sampled counterparts, thus pushing data beyond aliasing. The interpolation methodology estimated nonstationary, adaptive, filter coefficients at all trace locations, including at the missing traces’ corresponding positions, filled with zeroed traces. This is followed by an inversion problem that uses the previously estimated filter coefficients to insert the new, interpolated, traces between the original ones. We extended this two-step strategy to data interpolation by employing a device in which we used filter coefficients from a denser variable offset gather to interpolate the missing traces on a few independently constructed gathers. We applied the methodology on synthetic and real data sets, the latter acquired in the interior of the Antarctic continent. The variable-offset interpolated data opened the door to prestack processing, making feasible the production of a prestack time migrated section and a 2D velocity model for the entire profile. Notwithstanding, we have used a data set obtained in Antarctica; there is no reason the same methodology could not be used somewhere else.


2021 ◽  
Vol 13 (12) ◽  
pp. 2384
Author(s):  
Roland Filzwieser ◽  
Vujadin Ivanišević ◽  
Geert J. Verhoeven ◽  
Christian Gugl ◽  
Klaus Löcker ◽  
...  

Large parts of the urban layout of the abandoned Roman town of Bassianae (in present-day Serbia) are still discernible on the surface today due to the deliberate and targeted quarrying of the Roman foundations. In 2014, all of the town's intramural (and some extramural) areas were surveyed using aerial photography, ground-penetrating radar, and magnetometry to analyze the site's topography and to map remaining buried structures. The surveys showed a strong agreement between the digital surface model derived from the aerial photographs and the geophysical prospection data. However, many structures could only be detected by one method, underlining the benefits of a complementary archaeological prospection approach using multiple methods. This article presents the results of the extensive surveys and their comprehensive integrative interpretation, discussing Bassianae's ground plan and urban infrastructure. Starting with an overview of this Roman town's research history, we present the details of the triple prospection approach, followed by the processing, integrative analysis, and interpretation of the acquired data sets. Finally, this newly gained information is contrasted with a plan of Roman Bassianae compiled in 1935.


2019 ◽  
Vol 11 (4) ◽  
pp. 405
Author(s):  
Xuan Feng ◽  
Haoqiu Zhou ◽  
Cai Liu ◽  
Yan Zhang ◽  
Wenjing Liang ◽  
...  

The subsurface target classification of ground penetrating radar (GPR) is a popular topic in the field of geophysics. Among the existing classification methods, geometrical features and polarimetric attributes of targets are primarily used. As polarimetric attributes contain more information of targets, polarimetric decomposition methods, such as H-Alpha decomposition, have been developed for target classification of GPR in recent years. However, the classification template used in H-Alpha classification is preset depending on the experience of synthetic aperture radar (SAR); therefore, it may not be suitable for GPR. Moreover, many existing classification methods require excessive human operation, particularly when outliers exist in the sample (the data set containing the features of targets); therefore, they are not efficient or intelligent. We herein propose a new machine learning method based on sample centers, i.e., particle center supported plane (PCSP). The sample center is defined as the point with the smallest sum of distances from all points in the same sample, which is considered as a better representation of the sample without significant effect of the outliers. In this proposed method, particle swarm optimization (PSO) is performed to obtain the sample centers; the new criterion for subsurface target classification is achieved. We applied this algorithm to full polarimetric GPR data measured in the laboratory and outdoors. The results indicate that, comparing with support vector machine (SVM) and classical H-Alpha classification, this new method is more efficient and the accuracy is relatively high.


Geophysics ◽  
2016 ◽  
Vol 81 (1) ◽  
pp. WA119-WA129 ◽  
Author(s):  
Anja Rutishauser ◽  
Hansruedi Maurer ◽  
Andreas Bauder

On the basis of a large data set, comprising approximately 1200 km of profile lines acquired with different helicopter-borne ground-penetrating radar (GPR) systems over temperate glaciers in the western Swiss Alps, we have analyzed the possibilities and limitations of using helicopter-borne GPR surveying to map the ice-bedrock interface. We have considered data from three different acquisition systems including (1) a low-frequency pulsed system hanging below the helicopter (BGR), (2) a stepped frequency system hanging below the helicopter (Radar Systemtechnik GmbH [RST]), and (3) a commercial system mounted directly on the helicopter skids (Geophysical Survey Systems Incorporated [GSSI]). The systems showed considerable differences in their performance. The best results were achieved with the BGR system. On average, the RST and GSSI systems yielded comparable results, but we observed significant site-specific differences. A comparison with ground-based GPR data found that the quality of helicopter-borne data is inferior, but the compelling advantages of airborne surveying still make helicopter-borne data acquisition an attractive option. Statistical analyses concerning the bedrock detectability revealed not only large differences between the different acquisition systems but also between different regions within our investigation area. The percentage of bedrock reflections identified (with respect to the overall profile length within a particular region) varied from 11.7% to 68.9%. Obvious factors for missing the bedrock reflections included large bedrock depths and steeply dipping bedrock interfaces, but we also observed that internal features within the ice body may obscure bedrock reflections. In particular, we identified a conspicuous “internal reflection band” in many profiles acquired with the GSSI system. We attribute this feature to abrupt changes of the water content within the ice, but more research is required for a better understanding of the nature of this internal reflection band.


Geophysics ◽  
2009 ◽  
Vol 74 (1) ◽  
pp. J1-J12 ◽  
Author(s):  
Jacques Deparis ◽  
Stéphane Garambois

The presence of a thin layer embedded in any formation creates complex reflection patterns caused by interferences within the thin bed. The generated reflectivity amplitude variations with offset have been increasingly used in seismic interpretation and more recently tested on ground-penetrating radar (GPR) data to characterize nonaqueous-phase liquid contaminants. Phase and frequency sensitivities of the reflected signals are generally not used, although they contain useful information. The present study aims to evaluate the potential of these combined properties to characterize a thin bed using GPR data acquired along a common-midpoint (CMP) survey, carried out to assess velocity variations in the ground. It has been restricted to the simple case of a thin bed embedded within a homogeneous formation, a situation often encountered in fractured media. Dispersive properties ofthe dielectric permittivity of investigated materials (homogeneous formation, thin bed) are described using a Jonscher parameterization, which permitted study of the dependency of amplitude and phase variation with offset (APVO) curves on frequency and thin-bed properties (filling nature, aperture). In the second part, we discuss and illustrate the validity of the thin-bed approximation as well as simplify assumptions and make necessary careful corrections to convert raw CMP data into dispersive APVO curves. Two different strategies are discussed to correct the data from propagation effects: a classical normal-moveout approach and an inverse method. Finally, the proposed methodology is applied to a CMP GPR data set acquired along a vertical cliff. It allowed us to extract the characteristics of a subvertical fracture with satisfying resolution and confidence. The study motivates interest to use dispersion dependency of the reflection coefficient variations for thin-bed characterization.


Sign in / Sign up

Export Citation Format

Share Document