scholarly journals An automated method for the evaluation of the pointing accuracy of Sun-tracking devices

2017 ◽  
Vol 10 (3) ◽  
pp. 1181-1190 ◽  
Author(s):  
Dietmar J. Baumgartner ◽  
Werner Pötzi ◽  
Heinrich Freislich ◽  
Heinz Strutzmann ◽  
Astrid M. Veronig ◽  
...  

Abstract. The accuracy of solar radiation measurements, for direct (DIR) and diffuse (DIF) radiation, depends significantly on the precision of the operational Sun-tracking device. Thus, rigid targets for instrument performance and operation have been specified for international monitoring networks, e.g., the Baseline Surface Radiation Network (BSRN) operating under the auspices of the World Climate Research Program (WCRP). Sun-tracking devices that fulfill these accuracy requirements are available from various instrument manufacturers; however, none of the commercially available systems comprise an automatic accuracy control system allowing platform operators to independently validate the pointing accuracy of Sun-tracking sensors during operation. Here we present KSO-STREAMS (KSO-SunTRackEr Accuracy Monitoring System), a fully automated, system-independent, and cost-effective system for evaluating the pointing accuracy of Sun-tracking devices. We detail the monitoring system setup, its design and specifications, and the results from its application to the Sun-tracking system operated at the Kanzelhöhe Observatory (KSO) Austrian radiation monitoring network (ARAD) site. The results from an evaluation campaign from March to June 2015 show that the tracking accuracy of the device operated at KSO lies within BSRN specifications (i.e., 0.1° tracking accuracy) for the vast majority of observations (99.8 %). The evaluation of manufacturer-specified active-tracking accuracies (0.02°), during periods with direct solar radiation exceeding 300 W m−2, shows that these are satisfied in 72.9 % of observations. Tracking accuracies are highest during clear-sky conditions and on days where prevailing clear-sky conditions are interrupted by frontal movement; in these cases, we obtain the complete fulfillment of BSRN requirements and 76.4 % of observations within manufacturer-specified active-tracking accuracies. Limitations to tracking surveillance arise during overcast conditions and periods of partial solar-limb coverage by clouds. On days with variable cloud cover, 78.1 % (99.9 %) of observations meet active-tracking (BSRN) accuracy requirements while for days with prevailing overcast conditions these numbers reduce to 64.3 % (99.5 %).

2016 ◽  
Author(s):  
Dietmar J. Baumgartner ◽  
Werner Pötzi ◽  
Heinrich Freislich ◽  
Heinz Strutzmann ◽  
Astrid M. Veronig ◽  
...  

Abstract. The accuracy of solar radiation measurements (for direct and diffuse radiation) depends significantly on the precision of the operational sun-tracking device. Thus rigid targets for instrument performance and operation have been specified for international monitoring networks, such as e.g., the Baseline Surface Radiation Network (BSRN) operating under the auspices of the World Climate Research Program (WCRP). Sun-tracking devices fulfilling these accuracy requirements are available from various instrument manufacturers, however none of the commercially available systems comprises an automatic accuracy control system, allowing platform operators to independently validate the pointing accuracy of sun-tracking sensors during operation. Here we present KSO-STREAMS (KSO-SunTRackEr Accuracy Monitoring System), a fully automated, system independent and cost-effective method for evaluating the pointing accuracy of sun-tracking devices. We detail the monitoring system setup, its design and specifications and results from its application to the sun-tracking system operated at the Austrian RADiation network (ARAD) site Kanzelhöhe Observatory (KSO). Results from an evaluation campaign from March to June 2015 show that the tracking accuracy of the device operated at KSO lies for the vast majority of observations (99.8 %) within BSRN specifications (i.e., 0.1° tracking accuracy). Evaluation of manufacturer specified active tracking accuracies (0.02°), during periods with direct solar radiation exceeding 300 W m−2, shows that these are satisfied for 72.9 % of observations. Tracking accuracies are highest during clear-sky conditions and on days where prevailing clear-sky conditions are interrupted by frontal movement: in these cases we obtain complete fulfillment of BSRN requirements and 76.4 % of observations within manufacturer specified active tracking accuracies. Limitations to tracking surveillance arise during overcast conditions and periods of partial solar limb coverage by clouds. On days with variable cloud-cover 78.1 % (99.9 %) of observations meet active tracking (BSRN) accuracy requirements while for days with prevailing overcast conditions these numbers reduce to 64.3 % (99.5 %), respectively.


Hydrology ◽  
2019 ◽  
Vol 6 (3) ◽  
pp. 62 ◽  
Author(s):  
Bijan Seyednasrollah ◽  
Mukesh Kumar

Radiation is the major driver of snowmelt, and, hence, its estimation is critically important. Net radiation reaching the forest floor is influenced by vegetation density. Previous studies in mid-latitude conifer forests have confirmed that net radiation decreases and then subsequently increases with increasing vegetation density, for clear sky conditions. This leads to the existence of a net radiation minimum at an intermediate vegetation density. With increasing cloud cover, the minimum radiation shifts toward lower densities, sometimes resulting in a monotonically increasing radiation with vegetation density. The net radiation trend, however, is expected to change across sites, affecting the magnitude and timing of individual radiation components. This research explores the variability of net radiation on a snow-covered forest floor for different vegetation densities along a latitudinal gradient. We especially investigate how the magnitude of minimum/maximum radiation and the corresponding vegetation density change with the site geographical location. To evaluate these, the net radiation is evaluated using the Forest Radiation Model at six different locations in predominantly white spruce (Picea glauca) canopy cover across North America, ranging from 45 to 66° N latitudes. Results show that the variation of net radiation with vegetation density considerably varies with latitude. In higher latitude forests, the magnitude of net radiation is generally smaller, and the minimum radiation is exhibited at relatively sparser vegetation densities, under clear sky conditions. For interspersed cloudy sky conditions, net radiation non-monotonically varies with latitude across the sites, depending on the seasonal sky cloudiness and air temperature. The latitudinal sensitivity of net radiation is lower on north-facing hillslopes than on south-facing sites.


Energies ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 4402
Author(s):  
Julián Urrego-Ortiz ◽  
J. Alejandro Martínez ◽  
Paola A. Arias ◽  
Álvaro Jaramillo-Duque

The description and forecasting of hourly solar resource is fundamental for the operation of solar energy systems in the electric grid. In this work, we provide insights regarding the hourly variation of the global horizontal irradiance in Medellín, Colombia, a large urban area within the tropical Andes. We propose a model based on Markov chains for forecasting the hourly solar irradiance for one day ahead. The Markov model was compared against estimates produced by different configurations of the weather research forecasting model (WRF). Our assessment showed that for the period considered, the average availability of the solar resource was of 5 PSH (peak sun hours), corresponding to an average daily radiation of ~5 kWh/m2. This shows that Medellín, Colombia, has a substantial availability of the solar resource that can be a complementary source of energy during the dry season periods. In the case of the Markov model, the estimates exhibited typical root mean squared errors between ~80 W/m2 and ~170 W/m2 (~50%–~110%) under overcast conditions, and ~57 W/m2 to ~171 W/m2 (~16%–~38%) for clear sky conditions. In general, the proposed model had a performance comparable with the WRF model, while presenting a computationally inexpensive alternative to forecast hourly solar radiation one day in advance. The Markov model is presented as an alternative to estimate time series that can be used in energy markets by agents and power-system operators to deal with the uncertainty of solar power plants.


After shading a light on the extraterrestrial solar radiation in the chapter 3 it is important to evaluate the global terrestrial solar radiation and its components. The information on terrestrial solar radiation is required in several different forms depending on the kinds of calculations and kind of application that are to be done. Of course, terrestrial solar radiation on the horizontal plane depends on the different weather conditions such as cloud cover, relative humidity, and ambient temperature. Therefore, the impact of the atmosphere on solar radiation should be considered. One of the most important points of terrestrial solar radiation evaluation is its determination during clear sky conditions. Therefore, in this chapter, the equations that determine the air mass basing on available theories are given and the clear sky conditions are introduced with shading a light on the previous work in identifying clear sky conditions. Taking into consideration that, clear sky solar radiation estimation is of great importance for solar tracking, a detailed review of main available models is given in this chapter. As daily, monthly, seasonally, biannually and yearly mean daily solar radiations are required information for designing and installing long term tracking systems, different available methods are commented regarding their applicability for the estimation of solar radiation information in the desired format from the data that are available. An important accent is paid also on the assessment and comparison of monthly mean daily solar radiation estimation models.


2011 ◽  
Vol 11 (7) ◽  
pp. 3281-3289 ◽  
Author(s):  
J. Xu ◽  
C. Li ◽  
H. Shi ◽  
Q. He ◽  
L. Pan

Abstract. This study investigated the decadal variation of the direct surface solar radiation (DiSR) and the diffuse surface solar radiation (DfSR) during 1961–2008 in the Shanghai megacity as well as their relationships to Aerosol Optical Depth (AOD) under clear-sky conditions. Three successive periods with unique features of long term variation of DiSR were identified for both clear-sky and all-sky conditions: a "dimming" period from the late 1960s to the mid 1980s, a "stabilization"/"slight brightening" period from the mid 1980s to the mid 1990s, and a "renewed dimming" period thereafter. During the two dimming periods of DiSR, DfSR brightened significantly under clear-sky conditions, indicating that change in atmospheric transparency resulting from aerosol emission has an important role on decadal variation of surface solar radiation (SSR) over this area. The analysis on the relationship between the Moderate-resolution Imaging Spectroradiometer (MODIS) retrieved AOD and the corresponding hourly measurements of DiSR and DfSR under clear-sky conditions clearly revealed that AOD is significantly correlated and anti-correlated with DfSR and DiSR, respectively, both above 99% confidence in all seasons, indicating the great impact of aerosols on SSR through absorption and/or scattering in the atmosphere. In addition, both AOD and the corresponding DiSR and DfSR measured during the satellite passage over Shanghai show obvious weekly cycles. On weekends, AOD is lower than the weekly average, corresponding to higher DiSR and lower DfSR, while the opposite pattern was true for weekdays. Less AOD on weekends due to the reduction of transportation and industrial activities results in enhancement of atmospheric transparency under cloud free conditions so as to increase DiSR and decrease DfSR simultaneously. Results show that aerosol loading from the anthropogenic emissions is an important modulator for the long term variation of SSR in Shanghai.


2013 ◽  
Vol 6 (9) ◽  
pp. 2403-2418 ◽  
Author(s):  
M. Lefèvre ◽  
A. Oumbe ◽  
P. Blanc ◽  
B. Espinar ◽  
B. Gschwind ◽  
...  

Abstract. A new fast clear-sky model called McClear was developed to estimate the downwelling shortwave direct and global irradiances received at ground level under clear skies. It is a fully physical model replacing empirical relations or simpler models used before. It exploits the recent results on aerosol properties, and total column content in water vapour and ozone produced by the MACC project (Monitoring Atmosphere Composition and Climate). It accurately reproduces the irradiance computed by the libRadtran reference radiative transfer model with a computational speed approximately 105 times greater by adopting the abaci, or look-up table, approach combined with interpolation functions. It is therefore suited for geostationary satellite retrievals or numerical weather prediction schemes with many pixels or grid points, respectively. McClear irradiances were compared to 1 min measurements made in clear-sky conditions at several stations within the Baseline Surface Radiation Network in various climates. The bias for global irradiance comprises between −6 and 25 W m−2. The RMSE ranges from 20 W m−2 (3% of the mean observed irradiance) to 36 W m−2 (5%) and the correlation coefficient ranges between 0.95 and 0.99. The bias for the direct irradiance comprises between −48 and +33 W m−2. The root mean square error (RMSE) ranges from 33 W m−2 (5%) to 64 W m−2 (10%). The correlation coefficient ranges between 0.84 and 0.98. This work demonstrates the quality of the McClear model combined with MACC products, and indirectly the quality of the aerosol properties modelled by the MACC reanalysis.


2014 ◽  
Vol 53 (11) ◽  
pp. 2571-2588 ◽  
Author(s):  
Alberto Troccoli ◽  
Jean-Jacques Morcrette

AbstractPrediction of direct solar radiation is key in sectors such as solar power and agriculture; for instance, it can enable more efficient production of energy from concentrating solar power plants. An assessment of the quality of the direct solar radiation forecast by two versions of the European Centre for Medium-Range Weather Forecasts (ECMWF) global numerical weather prediction model up to 5 days ahead is carried out here. The performance of the model is measured against observations from four solar monitoring stations over Australia, characterized by diverse geographic and climatic features, for the year 2006. As a reference, the performance of global radiation forecast is carried out as well. In terms of direct solar radiation, while the skill of the two model versions is very similar, and with relative mean absolute errors (rMAEs) ranging from 18% to 45% and correlations between 0.85 and 0.25 at around midday, their performance is substantially enhanced via a simple postprocessing bias-correction procedure. There is a marked dependency on cloudy conditions, with rMAEs 2–4 times as large for very cloudy-to-overcast conditions relative to clear-sky conditions. There is also a distinct dependency on the background climatic clear-sky conditions of the location considered. Tests made on a simulated operational setup targeting three quantiles show that direct radiation forecasts achieve potentially high scores. Overall, these analyses provide an indication of the potential practical use of direct irradiance forecast for applications such as solar power operations.


2021 ◽  
Vol 11 (2) ◽  
pp. 719
Author(s):  
Stelios Pashiardis ◽  
Soteris A. Kalogirou

In this study, two years of hourly longwave downward and upward irradiance measurements at Athalassa, an inland location, are used to analyze and compare them. A detailed quality control process was followed according to the suggested tests proposed by the Baseline Surface Radiation Network (BSRN) group. The criteria involved are based on physically possible, extremely rare and climatological limits. Furthermore, comparison tests were also applied between the two longwave components as well as with air and ground surface temperatures. Additionally, time consistency and persistency tests were applied. All the suspect data were excluded from the analysis. The data showed that the frequency distribution of downward longwave irradiances follows a normal distribution function, while the upward longwave follows an almost normal distribution but with a long positive tail. The annual mean daily downward longwave irradiation is 27.3 MJ m−2 and the annual mean daily upward longwave irradiation is 37.8 MJ m−2. The net longwave irradiation is always negative ranging from −5.9 to −12.1 MJ/m2. Various models were tested to estimate daylight and all day downward and upward longwave irradiances under clear-sky and all-sky conditions. For the comparison of measured and estimated values the root-mean-square errors and linear regression correlations have been used. The results of this comparison showed that Idso’s and Brunt’s models perform well, and they can be used to estimate downward longwave irradiance under clear-sky conditions. Furthermore, both models were extended to estimate the daylight downward longwave irradiance under all-sky conditions by taking into account the ratio of global to the clear-sky global solar irradiance. In this case, the RMSE of the local calibrated coefficients scheme of Idso’s model was 30.6 W m−2, while Brunt’s model showed slightly lower value (29.0 W m−2).


Sign in / Sign up

Export Citation Format

Share Document