scholarly journals Retrieval of nitric oxide in the mesosphere from SCIAMACHY nominal limb spectra

2017 ◽  
Vol 10 (1) ◽  
pp. 209-220 ◽  
Author(s):  
Stefan Bender ◽  
Miriam Sinnhuber ◽  
Martin Langowski ◽  
John P. Burrows

Abstract. We present a retrieval algorithm for nitric oxide (NO) number densities from measurements from the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY, on Envisat) nominal limb mode (0–91 km). The NO number densities are derived from atmospheric emissions in the gamma bands in the range 230–300 nm, measured by the SCIAMACHY ultra-violet (UV) channel 1. The retrieval is adapted from the mesosphere and lower thermosphere mode (MLT, 50–150 km) NO retrieval (Bender et al., 2013), including the same 3-D ray tracing, 2-D retrieval grid, and regularisations with respect to altitude and latitude.Since the nominal mode limb scans extend only to about 91 km, we use NO densities in the lower thermosphere (above 92 km), derived from empirical models, as a priori input. The priors are the Nitric Oxide Empirical Model (NOEM; Marsh et al., 2004) and a regression model derived from the MLT NO data comparison (Bender et al., 2015). Our algorithm yields plausible NO number densities from 60 to 85 km from the SCIAMACHY nominal limb mode scans. Using a priori input substantially reduces the incorrect attribution of NO from the lower thermosphere, where no direct limb measurements are available. The vertical resolution lies between 5 and 10 km in the altitude range 65–80 km.Analysing all SCIAMACHY nominal limb scans provides almost 10 years (from August 2002 to April 2012) of daily NO measurements in this altitude range. This provides a unique data record of NO in the upper atmosphere and is invaluable for constraining NO in the mesosphere, in particular for testing and validating chemistry climate models during this period.

2016 ◽  
Author(s):  
Stefan Bender ◽  
Miriam Sinnhuber ◽  
Martin Langowski ◽  
John P. Burrows

Abstract. We retrieve nitric monoxide (NO) number densities from measurements from the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY, on Envisat) nominal limb mode (0–91 km). We derive the NO number densities from atmospheric emissions in the gamma bands in the range 230–300 nm, measured by the SCIAMACHY ultra-violet (UV) channel 1. We adapt the NO retrieval from the mesosphere and lower thermosphere mode (MLT, 50–150 km) (Bender et al., 2013), including the same 3-D ray tracing, 2-D retrieval grid, and regularisations with respect to altitude and latitude. Since the nominal mode limb scans extend only to about 91 km, we use NO densities in the lower thermosphere (above 92 km) derived from empirical models as a priori input. As priors we use the NOEM model (Marsh et al., 2004) and a regression model derived from the MLT NO data comparison (Bender et al., 2015). Our algorithm yields meaningful NO number densities from 60 km to 85 km from the SCIAMACHY nominal limb mode scans. Using a priori input substantially reduces the misidentification of NO from the lower thermosphere, where no direct limb measurements are available. We achieve a vertical resolution of 5–10 km in the altitude range 65–80 km. Analysing all SCIAMACHY nominal limb scans provides almost ten years (from August 2002 to April 2012) of daily NO measurements in this altitude range. This provides a unique data record of NO in the upper atmosphere and is invaluable to constrain NO in the mesosphere, in particular for testing and validating chemistry climate models during this period.


2013 ◽  
Vol 6 (9) ◽  
pp. 2521-2531 ◽  
Author(s):  
S. Bender ◽  
M. Sinnhuber ◽  
J. P. Burrows ◽  
M. Langowski ◽  
B. Funke ◽  
...  

Abstract. We use the ultra-violet (UV) spectra in the range 230–300 nm from the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) to retrieve the nitric oxide (NO) number densities from atmospheric emissions in the gamma-bands in the mesosphere and lower thermosphere. Using 3-D ray tracing, a 2-D retrieval grid, and regularisation with respect to altitude and latitude, we retrieve a whole semi-orbit simultaneously for the altitude range from 60 to 160 km. We present details of the retrieval algorithm, first results, and initial comparisons to data from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS). Our results agree on average well with MIPAS data and are in line with previously published measurements from other instruments. For the time of available measurements in 2008–2011, we achieve a vertical resolution of 5–10 km in the altitude range 70–140 km and a horizontal resolution of about 9° from 60° S–60° N. With this we have independent measurements of the NO densities in the mesosphere and lower thermosphere with approximately global coverage. This data can be further used to validate climate models or as input for them.


2013 ◽  
Vol 6 (2) ◽  
pp. 3611-3642
Author(s):  
S. Bender ◽  
M. Sinnhuber ◽  
J. P. Burrows ◽  
M. Langowski ◽  
B. Funke ◽  
...  

Abstract. We use the ultra-violett (UV) spectra in the range 230–300 nm from the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) to retrieve the nitric oxide (NO) number densities from atmospheric emissions in the gamma-bands in the mesosphere and lower thermosphere. Using 3-D ray tracing, a 2-D retrieval grid, and regularisation with respect to altitude and latitude, we retrieve a whole semi-orbit simultaneously for the altitude range from 60 to 160 km. We present details of the retrieval algorithm, first results, and initial comparisons to data from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS). Our results agree on average well with MIPAS data and are compatible with previously published measurements from other instruments. For the time of available measurements in 2008–2011, we achieve a vertical resolution of 5–10 km in the altitude range 70–140 km and a horizontal resolution of about 9° from 60° S–60° N. With this we have independent measurements of the NO densities in the mesosphere and lower thermosphere with approximately global coverage.


2019 ◽  
Vol 19 (4) ◽  
pp. 2135-2147 ◽  
Author(s):  
Stefan Bender ◽  
Miriam Sinnhuber ◽  
Patrick J. Espy ◽  
John P. Burrows

Abstract. We present an empirical model for nitric oxide (NO) in the mesosphere (≈60–90 km) derived from SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartoghraphY) limb scan data. This work complements and extends the NOEM (Nitric Oxide Empirical Model; Marsh et al., 2004) and SANOMA (SMR Acquired Nitric Oxide Model Atmosphere; Kiviranta et al., 2018) empirical models in the lower thermosphere. The regression ansatz builds on the heritage of studies by Hendrickx et al. (2017) and the superposed epoch analysis by Sinnhuber et al. (2016) which estimate NO production from particle precipitation. Our model relates the daily (longitudinally) averaged NO number densities from SCIAMACHY (Bender et al., 2017b, a) as a function of geomagnetic latitude to the solar Lyman-α and the geomagnetic AE (auroral electrojet) indices. We use a non-linear regression model, incorporating a finite and seasonally varying lifetime for the geomagnetically induced NO. We estimate the parameters by finding the maximum posterior probability and calculate the parameter uncertainties using Markov chain Monte Carlo sampling. In addition to providing an estimate of the NO content in the mesosphere, the regression coefficients indicate regions where certain processes dominate.


2011 ◽  
Vol 4 (5) ◽  
pp. 933-954 ◽  
Author(s):  
A. Rozanov ◽  
K. Weigel ◽  
H. Bovensmann ◽  
S. Dhomse ◽  
K.-U. Eichmann ◽  
...  

Abstract. This study describes the retrieval of water vapor vertical distributions in the upper troposphere and lower stratosphere (UTLS) altitude range from space-borne observations of the scattered solar light made in limb viewing geometry. First results using measurements from SCIAMACHY (Scanning Imaging Absorption spectroMeter for Atmospheric CHartographY) aboard ENVISAT (Environmental Satellite) are presented here. In previous publications, the retrieval of water vapor vertical distributions has been achieved exploiting either the emitted radiance leaving the atmosphere or the transmitted solar radiation. In this study, the scattered solar radiation is used as a new source of information on the water vapor content in the UTLS region. A recently developed retrieval algorithm utilizes the differential absorption structure of the water vapor in 1353–1410 nm spectral range and yields the water vapor content in the 11–25 km altitude range. In this study, the retrieval algorithm is successfully applied to SCIAMACHY limb measurements and the resulting water vapor profiles are compared to in situ balloon-borne observations. The results from both satellite and balloon-borne instruments are found to agree typically within 10 %.


1998 ◽  
Vol 16 (10) ◽  
pp. 1180-1189 ◽  
Author(s):  
T. Nygrén ◽  
M. J. Taylor ◽  
M. S. Lehtinen ◽  
M. Markkanen

Abstract. It is pointed out that observations of periodic nightglow structures give excellent information on atmospheric gravity waves in the mesosphere and lower thermosphere. The periods, the horizontal wavelengths and the phase speeds of the waves can be determined from airglow images and, using several cameras, the approximate altitude of the luminous layer can also be determined by triangulation. In this paper the possibility of applying tomographic methods for reconstructing the airglow structures is investigated using numerical simulations. A ground-based chain of cameras is assumed, two-dimensional airglow models in the vertical plane above the chain are constructed, and simulated data are calculated by integrating the models along a great number of rays with different elevation angles for each camera. After addition of random noise, these data are then inverted to obtain reconstructions of the models. A tomographic analysis package originally designed for satellite radiotomography is used in the inversion. The package is based on a formulation of stochastic inversion which allows the input of a priori information to the solver in terms of regularization variances. The reconstruction is carried out in two stages. In the first inversion, constant regularization variances are used within a wide altitude range. The results are used in determining the approximate altitude range of the airglow structures. Then, in the second inversion, constant non-zero regularization variances are used inside this region and zero variances outside it. With this method reliable reconstructions of the models are obtained. The number of cameras as well as their separations are varied in order to find out the limitations of the method.Key words. Tomography · Airglow · Mesopause · Gravity waves


2014 ◽  
Vol 7 (12) ◽  
pp. 12735-12794 ◽  
Author(s):  
S. Bender ◽  
M. Sinnhuber ◽  
T. von Clarmann ◽  
G. Stiller ◽  
B. Funke ◽  
...  

Abstract. We compare the nitric oxide measurements in the mesosphere and lower thermosphere (60 to 150 km) from four instruments: ACE-FTS, MIPAS, SCIAMACHY, and SMR. We use the daily zonal mean data in that altitude range for the years 2004–2010 (ACE-FTS), 2005–2012 (MIPAS), 2008–2012 (SCIAMACHY), and 2003–2012 (SMR). We first compare the data qualitatively with respect to the morphology, focussing on the major features, and then compare the time series directly and quantitatively. In three geographical regions, we compare the vertical density profiles on coincident measurement days. Since none of the instruments delivers continuous daily measurements in this altitude region, we carried out a multi-linear regression analysis. This regression analysis considers annual and semi-annual variability in form of harmonic terms and inter-annual variability by responding linearly to the solar Lyman-α radiation index and the geomagnetic Kp index. This analysis helps to find similarities and differences in the individual data sets with respect to the inter-annual variations caused by geomagnetic and solar variability. We find that the data sets are consistent and that they only disagree on minor aspects. SMR and ACE-FTS deliver the longest time series in the mesosphere and they both agree remarkably well. The shorter time series from MIPAS and SCIAMACHY also agree with them where they overlap. The data agree within ten to twenty percent when the number densities are large, but they can differ by 50 to 100% in some cases.


2015 ◽  
Vol 8 (10) ◽  
pp. 4171-4195 ◽  
Author(s):  
S. Bender ◽  
M. Sinnhuber ◽  
T. von Clarmann ◽  
G. Stiller ◽  
B. Funke ◽  
...  

Abstract. We compare the nitric oxide measurements in the mesosphere and lower thermosphere (60 to 150 km) from four instruments: the Atmospheric Chemistry Experiment–Fourier Transform Spectrometer (ACE-FTS), the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY), and the Sub-Millimetre Radiometer (SMR). We use the daily zonal mean data in that altitude range for the years 2004–2010 (ACE-FTS), 2005–2012 (MIPAS), 2008–2012 (SCIAMACHY), and 2003–2012 (SMR). We first compare the data qualitatively with respect to the morphology, focussing on the major features, and then compare the time series directly and quantitatively. In three geographical regions, we compare the vertical density profiles on coincident measurement days. Since none of the instruments delivers continuous daily measurements in this altitude region, we carried out a multi-linear regression analysis. This regression analysis considers annual and semi-annual variability in the form of harmonic terms and inter-annual variability by responding linearly to the solar Lyman-α radiation index and the geomagnetic Kp index. This analysis helps to find similarities and differences in the individual data sets with respect to the inter-annual variations caused by geomagnetic and solar variability. We find that the data sets are consistent and that they only disagree on minor aspects. SMR and ACE-FTS deliver the longest time series in the mesosphere, and they agree with each other remarkably well. The shorter time series from MIPAS and SCIAMACHY also agree with them where they overlap. The data agree within 30 % when the number densities are large, but they can differ by 50 to 100 % in some cases.


2013 ◽  
Vol 6 (3) ◽  
pp. 4445-4509 ◽  
Author(s):  
M. Langowski ◽  
M. Sinnhuber ◽  
A. C. Aikin ◽  
C. von Savigny ◽  
J. P. Burrows

Abstract. Meteoroids bombard the earth's atmosphere during its orbit around the sun, depositing a highly varying and significant amount of matter into the thermosphere and mesosphere. The strength of the material source needs to be characterized and its impact on atmospheric chemistry assessed. In this study an algorithm for the retrieval of metal and metal ion number densities for a two-dimensional (latitude, altitude) grid is described and explained. Dayglow emission spectra of the mesosphere and lower thermosphere are used, which are obtained by passive satellite remote sensing with the SCIAMACHY instrument on Envisat. The limb scans cover the tangent altitude range from 50 to 150 km. Metals and metal ions are strong emitters in this region and form sharply peaked layers with a FWHM of several 10 km in the mesosphere and lower thermosphere with peak altitudes between 90 to 110 km. The emission signal is first separated from the background signal, arising from Rayleigh and Raman scattering of solar radiation by air molecules. A forward radiative transfer model calculating the slant column density (SCD) from a given vertical distribution was developed. This non-linear model is inverted in an iterative procedure to yield the vertical profiles for the emitting species. Several constraints are applied to the solution, for numerical stability reasons and to get physically reasonable solutions. The algorithm is applied to SCIAMACHY limb-emission observations for the retrieval of Mg and Mg+ using emission signatures at 285.2 and 279.6/280.4 nm, respectively. Results are presented for these three lines as well as error estimations and sensitivity tests on different constraint strength and different separation approaches for the background signal.


Sign in / Sign up

Export Citation Format

Share Document