scholarly journals Retrieval algorithm for densities of mesospheric and lower thermospheric metal and ion species from satellite borne limb emission signals

2013 ◽  
Vol 6 (3) ◽  
pp. 4445-4509 ◽  
Author(s):  
M. Langowski ◽  
M. Sinnhuber ◽  
A. C. Aikin ◽  
C. von Savigny ◽  
J. P. Burrows

Abstract. Meteoroids bombard the earth's atmosphere during its orbit around the sun, depositing a highly varying and significant amount of matter into the thermosphere and mesosphere. The strength of the material source needs to be characterized and its impact on atmospheric chemistry assessed. In this study an algorithm for the retrieval of metal and metal ion number densities for a two-dimensional (latitude, altitude) grid is described and explained. Dayglow emission spectra of the mesosphere and lower thermosphere are used, which are obtained by passive satellite remote sensing with the SCIAMACHY instrument on Envisat. The limb scans cover the tangent altitude range from 50 to 150 km. Metals and metal ions are strong emitters in this region and form sharply peaked layers with a FWHM of several 10 km in the mesosphere and lower thermosphere with peak altitudes between 90 to 110 km. The emission signal is first separated from the background signal, arising from Rayleigh and Raman scattering of solar radiation by air molecules. A forward radiative transfer model calculating the slant column density (SCD) from a given vertical distribution was developed. This non-linear model is inverted in an iterative procedure to yield the vertical profiles for the emitting species. Several constraints are applied to the solution, for numerical stability reasons and to get physically reasonable solutions. The algorithm is applied to SCIAMACHY limb-emission observations for the retrieval of Mg and Mg+ using emission signatures at 285.2 and 279.6/280.4 nm, respectively. Results are presented for these three lines as well as error estimations and sensitivity tests on different constraint strength and different separation approaches for the background signal.

2014 ◽  
Vol 7 (1) ◽  
pp. 29-48 ◽  
Author(s):  
M. Langowski ◽  
M. Sinnhuber ◽  
A. C. Aikin ◽  
C. von Savigny ◽  
J. P. Burrows

Abstract. Meteoroids bombard Earth's atmosphere during its orbit around the Sun, depositing a highly varying and significant amount of matter into the thermosphere and mesosphere. The strength of the material source needs to be characterized and its impact on atmospheric chemistry assessed. In this study an algorithm for the retrieval of metal atom and ion number densities for a two-dimensional (latitude, altitude) grid is described and explained. Dayglow emission spectra of the mesosphere and lower thermosphere are used, which are obtained by passive satellite remote sensing with the SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY) instrument on board Envisat. The limb scans cover the tangent altitude range from 50 to 150 km. Metal atoms and ions are strong emitters in this region and form sharply peaked layers with a FWHM (full width at half maximum) of several 10 km in the mesosphere and lower thermosphere measuring peak altitudes between 90 to 110 km. The emission signal is first separated from the background signal, arising from Rayleigh and Raman scattering of solar radiation by air molecules. A forward radiative transfer model calculating the slant column density (SCD) from a given vertical distribution was developed. This nonlinear model is inverted in an iterative procedure to yield the vertical profiles for the emitting species. Several constraints are applied to the solution for numerical stability reasons and to get physically reasonable solutions. The algorithm is applied to SCIAMACHY limb-emission observations for the retrieval of Mg and Mg+ using emission signatures at 285.2 and 279.6/280.4 nm, respectively. Results are presented for these three lines as well as error estimations and sensitivity tests on different constraint strength and different separation approaches for the background signal.


2021 ◽  
Author(s):  
Amy Louca ◽  
Yamila Miguel ◽  
Shang-Min Tsai

<p class="p1">Observations of exoplanets used to characterize the chemistry and dynamics of atmospheres have developed considerably throughout the years. Nonetheless, it remains a difficult task to give a full and detailed description using solely observations. With future space missions such as JWST and ARIEL, both expected to be launched within this decade, it becomes even more crucial to be able to fully explain and predict the underlying chemistry and physics involved. In this research, we focus on modeling star-planet interactions by using synthetic flare spectra to predict chemical tracers for future missions. We make use of a chemical kinetics code that includes synthetic time-dependent stellar spectra and thermal atmospheric escape to simulate the atmospheres of known exoplanets. Using a radiative transfer model we then retrieve emission spectra. This ongoing study is focused on various known planetary systems of which the stellar spectrum has been obtained by the (mega-)MUSCLES collaboration. Preliminary results on these systems show that stellar flares and thermal escape can have a significant effect on the chemistry in atmospheres. </p>


2021 ◽  
Author(s):  
Heinz-Wilhelm Hübers ◽  
Heiko Richter ◽  
Christof Buchbender ◽  
Rolf Güsten ◽  
Ronan Higgins ◽  
...  

<p>Atomic oxygen is a main component of the mesosphere and lower thermosphere (MLT). The photochemistry and the energy balance of the MLT are governed by atomic oxygen. In addition, it is a tracer for dynamical motions in the MLT. It is difficult to measure with remote sensing techniques. Concentrations can be inferred indirectly from the oxygen air glow or from observations of OH, which is involved in photochemical processes related to atomic oxygen. Such measurements have been performed with several satellite instruments such as SCIAMACHY, SABER, WINDII and OSIRIS. However, the methods are indirect and rely on photochemical models and assumptions such as quenching rates, radiative lifetimes, and reaction coefficients. The results are not always in agreement, particularly when obtained with different instruments.</p><p>We have explored an alternative approach, namely the observation of the <sup>3</sup>P<sub>1</sub> → <sup>3</sup>P<sub>2</sub> fine-structure transition of atomic oxygen at 4.7 THz (63 µm) using the German Receiver for Astronomy at Terahertz Frequencies (GREAT) on board of SOFIA, the Stratospheric Observatory for Infrared Astronomy. GREAT is a heterodyne spectrometer providing high sensitivity and high spectral resolution as low as 76 kHz. This method enables the direct measurement without involving photochemical models to derive the atomic oxygen concentration. The night-time measurements have been performed during a SOFIA flight along the west coast of the US. These are the first measurements which resolve the line shape of the 4.7-THz transition. From the spectra the concentration profiles and radiances of atomic oxygen were derived with a radiative transfer model. The observed radiances range from 1.5 to 2.2 nW cm<sup>-2 </sup>sr<sup>-1</sup> and the the altitude profiles agree within the measurement uncertainty with SABER data and the NRLMSISE-00 model [1].</p><p>In conclusion, THz heterodyne spectroscopy is a powerful method to measure atomic oxygen in the MLT. With the current progress in THz technology balloon-borne and space-borne 4.7-THz heterodyne spectrometers become feasible [2, 3]. Combining such a THz spectrometer with optical instruments similar to SABER or SCIAMACHY will be even more advantageous for the determination of atomic oxygen in the MLT.</p><p>[1] H. Richter et al., Direct measurements of atomic oxygen in the mesosphere and lower thermosphere using terahertz heterodyne spectroscopy, accepted for publication in Communications Earth & Environment (2021).</p><p>[2] M. Wienold et al, A balloon-borne 4.75 THz-heterodyne receiver to probe atomic oxygen in the atmosphere, to appear in: Proceedings of the 45<sup>th</sup> International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) (Buffalo, NY, 2020).</p><p>[3] S. P. Rea et al., The low-cost upper-atmosphere sounder (LOCUS), Proceedings of the 26th International Symposium on Space Terahertz Technology (Cambridge, MA, 2015).</p>


2020 ◽  
Vol 13 (1) ◽  
pp. 116
Author(s):  
Lucie Leonarski ◽  
Laurent C.-Labonnote ◽  
Mathieu Compiègne ◽  
Jérôme Vidot ◽  
Anthony J. Baran ◽  
...  

The present study aims to quantify the potential of hyperspectral thermal infrared sounders such as the Infrared Atmospheric Sounding Interferometer (IASI) and the future IASI next generation (IASI-NG) for retrieving the ice cloud layer altitude and thickness together with the ice water path. We employed the radiative transfer model Radiative Transfer for TOVS (RTTOV) to simulate cloudy radiances using parameterized ice cloud optical properties. The radiances have been computed from an ice cloud profile database coming from global operational short-range forecasts at the European Center for Medium-range Weather Forecasts (ECMWF) which encloses the normal conditions, typical variability, and extremes of the atmospheric properties over one year (Eresmaa and McNally (2014)). We performed an information content analysis based on Shannon’s formalism to determine the amount and spectral distribution of the information about ice cloud properties. Based on this analysis, a retrieval algorithm has been developed and tested on the profile database. We considered the signal-to-noise ratio of each specific instrument and the non-retrieved atmospheric and surface parameter errors. This study brings evidence that the observing system provides information on the ice water path (IWP) as well as on the layer altitude and thickness with a convergence rate up to 95% and expected errors that decrease with cloud opacity until the signal saturation is reached (satisfying retrievals are achieved for clouds whose IWP is between about 1 and 300 g/m2).


2015 ◽  
Vol 15 (8) ◽  
pp. 4131-4144 ◽  
Author(s):  
P. Wang ◽  
M. Allaart ◽  
W. H. Knap ◽  
P. Stammes

Abstract. A green light sensor has been developed at KNMI to measure actinic flux profiles using an ozonesonde balloon. In total, 63 launches with ascending and descending profiles were performed between 2006 and 2010. The measured uncalibrated actinic flux profiles are analysed using the Doubling–Adding KNMI (DAK) radiative transfer model. Values of the cloud optical thickness (COT) along the flight track were taken from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) Cloud Physical Properties (CPP) product. The impact of clouds on the actinic flux profile is evaluated on the basis of the cloud modification factor (CMF) at the cloud top and cloud base, which is the ratio between the actinic fluxes for cloudy and clear-sky scenes. The impact of clouds on the actinic flux is clearly detected: the largest enhancement occurs at the cloud top due to multiple scattering. The actinic flux decreases almost linearly from cloud top to cloud base. Above the cloud top the actinic flux also increases compared to clear-sky scenes. We find that clouds can increase the actinic flux to 2.3 times the clear-sky value at cloud top and decrease it to about 0.05 at cloud base. The relationship between CMF and COT agrees well with DAK simulations, except for a few outliers. Good agreement is found between the DAK-simulated actinic flux profiles and the observations for single-layer clouds in fully overcast scenes. The instrument is suitable for operational balloon measurements because of its simplicity and low cost. It is worth further developing the instrument and launching it together with atmospheric chemistry composition sensors.


2018 ◽  
Vol 11 (8) ◽  
pp. 4707-4723 ◽  
Author(s):  
Norbert Glatthor ◽  
Thomas von Clarmann ◽  
Gabriele P. Stiller ◽  
Michael Kiefer ◽  
Alexandra Laeng ◽  
...  

Abstract. Discrepancies in ozone retrievals in MIPAS channels A (685–970 cm−1) and AB (1020–1170 cm−1) have been a long-standing problem in MIPAS data analysis, amounting to an interchannel bias (AB–A) of up to 8 % between ozone volume mixing ratios in the altitude range 30–40 km. We discuss various candidate explanations, among them forward model and retrieval algorithm errors, interchannel calibration inconsistencies and spectroscopic data inconsistencies. We show that forward-modelling errors as well as errors in the retrieval algorithm can be ruled out as an explanation because the bias can be reproduced with an entirely independent retrieval algorithm (GEOFIT), relying on a different forward radiative transfer model. Instrumental and calibration issues can also be refuted as an explanation because ozone retrievals based on balloon-borne measurements with a different instrument (MIPAS-B) and an independent level-1 data processing scheme produce a rather similar interchannel bias. Thus, spectroscopic inconsistencies in the MIPAS database used for ozone retrieval are practically the only reason left. To further investigate this issue, we performed retrievals using additional spectroscopic databases. Various versions of the HITRAN database generally produced rather similar channel AB–A differences. Use of a different database, namely GEISA-2015, led to similar results in channel AB, but to even higher ozone volume mixing ratios for channel A retrievals, i.e. to a reversal of the bias. We show that the differences in MIPAS channel A retrievals result from about 13 % lower air-broadening coefficients of the strongest lines in the GEISA-2015 database. Since the errors in line intensity of the major lines used in MIPAS channels A and AB are reported to be considerably lower than the observed bias, we posit that a major part of the channel AB–A differences can be attributed to inconsistent air-broadening coefficients as well. To corroborate this assumption we show some clearly inconsistent air-broadening coefficients in the HITRAN-2008 database. The interchannel bias in retrieved ozone amounts can be reduced by increasing the air-broadening coefficients of the lines in MIPAS channel AB in the HITRAN-2008 database by 6 %–8 %.


2015 ◽  
Vol 12 (12) ◽  
pp. 13019-13067
Author(s):  
A. Barella-Ortiz ◽  
J. Polcher ◽  
P. de Rosnay ◽  
M. Piles ◽  
E. Gelati

Abstract. L-Band radiometry is considered to be one of the most suitable techniques to estimate surface soil moisture by means of remote sensing. Brightness temperatures are key in this process, as they are the main input in the retrieval algorithm. The work exposed compares brightness temperatures measured by the Soil Moisture and Ocean Salinity (SMOS) mission to two different sets of modelled ones, over the Iberian Peninsula from 2010 to 2012. The latter were estimated using a radiative transfer model and state variables from two land surface models: (i) ORganising Carbon and Hydrology In Dynamic EcosystEms (ORCHIDEE) and (ii) Hydrology – Tiled ECMWF Scheme for Surface Exchanges over Land (H-TESSEL). The radiative transfer model used is the Community Microwave Emission Model (CMEM). A good agreement in the temporal evolution of measured and modelled brightness temperatures is observed. However, their spatial structures are not consistent between them. An Empirical Orthogonal Function analysis of the brightness temperature's error identifies a dominant structure over the South-West of the Iberian Peninsula which evolves during the year and is maximum in Fall and Winter. Hypotheses concerning forcing induced biases and assumptions made in the radiative transfer model are analysed to explain this inconsistency, but no candidate is found to be responsible for it at the moment. Further hypotheses are proposed at the end of the paper.


2015 ◽  
Vol 15 (6) ◽  
pp. 3007-3020 ◽  
Author(s):  
R. Loughman ◽  
D. Flittner ◽  
E. Nyaku ◽  
P. K. Bhartia

Abstract. The Gauss–Seidel limb scattering (GSLS) radiative transfer (RT) model simulates the transfer of solar radiation through the atmosphere and is imbedded in the retrieval algorithm used to process data from the Ozone Mapping and Profiler Suite (OMPS) limb profiler (LP), which was launched on the Suomi NPP satellite in October 2011. A previous version of this model has been compared with several other limb scattering RT models in previous studies, including Siro, MCC++, CDIPI, LIMBTRAN, SASKTRAN, VECTOR, and McSCIA. To address deficiencies in the GSLS radiance calculations revealed in earlier comparisons, several recent changes have been added that improve the accuracy and flexibility of the GSLS model, including 1. improved treatment of the variation of the extinction coefficient with altitude, both within atmospheric layers and above the nominal top of the atmosphere; 2. addition of multiple-scattering source function calculations at multiple solar zenith angles along the line of sight (LOS); 3. introduction of variable surface properties along the limb LOS, with minimal effort required to add variable atmospheric properties along the LOS as well; 4. addition of the ability to model multiple aerosol types within the model atmosphere. The model improvements 1 and 2 are verified by comparison to previously published results (using standard radiance tables whenever possible), demonstrating significant improvement in cases for which previous versions of the GSLS model performed poorly. The single-scattered radiance errors that were as high as 4% in earlier studies are now generally reduced to 0.3%, while total radiance errors generally decline from 10% to 1–3%. In all cases, the tangent height dependence of the GSLS radiance error is greatly reduced.


Sensors ◽  
2020 ◽  
Vol 20 (4) ◽  
pp. 1225
Author(s):  
Lanka Karthikeyan ◽  
Ming Pan ◽  
Dasika Nagesh Kumar ◽  
Eric F. Wood

Passive microwave sensors use a radiative transfer model (RTM) to retrieve soil moisture (SM) using brightness temperatures (TB) at low microwave frequencies. Vegetation optical depth (VOD) is a key input to the RTM. Retrieval algorithms can analytically invert the RTM using dual-polarized TB measurements to retrieve the VOD and SM concurrently. Algorithms in this regard typically use the τ-ω types of models, which consist of two third-order polynomial equations and, thus, can have multiple solutions. Through this work, we find that uncertainty occurs due to the structural indeterminacy that is inherent in all τ-ω types of models in passive microwave SM retrieval algorithms. In the process, a new analytical solution for concurrent VOD and SM retrieval is presented, along with two widely used existing analytical solutions. All three solutions are applied to a fixed framework of RTM to retrieve VOD and SM on a global scale, using X-band Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) TB data. Results indicate that, with structural uncertainty, there ensues a noticeable impact on the VOD and SM retrievals. In an era where the sensitivity of retrieval algorithms is still being researched, we believe the structural indeterminacy of RTM identified here would contribute to uncertainty in the soil moisture retrievals.


2016 ◽  
Vol 9 (6) ◽  
pp. 2647-2668 ◽  
Author(s):  
Caroline R. Nowlan ◽  
Xiong Liu ◽  
James W. Leitch ◽  
Kelly Chance ◽  
Gonzalo González Abad ◽  
...  

Abstract. The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument is a test bed for upcoming air quality satellite instruments that will measure backscattered ultraviolet, visible and near-infrared light from geostationary orbit. GeoTASO flew on the NASA Falcon aircraft in its first intensive field measurement campaign during the Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) Earth Venture Mission over Houston, Texas, in September 2013. Measurements of backscattered solar radiation between 420 and 465 nm collected on 4 days during the campaign are used to determine slant column amounts of NO2 at 250 m  ×  250 m spatial resolution with a fitting precision of 2.2 × 1015 moleculescm−2. These slant columns are converted to tropospheric NO2 vertical columns using a radiative transfer model and trace gas profiles from the Community Multiscale Air Quality (CMAQ) model. Total column NO2 from GeoTASO is well correlated with ground-based Pandora observations (r = 0.90 on the most polluted and cloud-free day of measurements and r = 0.74 overall), with GeoTASO NO2 slightly higher for the most polluted observations. Surface NO2 mixing ratios inferred from GeoTASO using the CMAQ model show good correlation with NO2 measured in situ at the surface during the campaign (r = 0.85). NO2 slant columns from GeoTASO also agree well with preliminary retrievals from the GEO-CAPE Airborne Simulator (GCAS) which flew on the NASA King Air B200 (r = 0.81, slope = 0.91). Enhanced NO2 is resolvable over areas of traffic NOx emissions and near individual petrochemical facilities.


Sign in / Sign up

Export Citation Format

Share Document