scholarly journals Retrieval of nitric oxide in the mesosphere from SCIAMACHY nominal limb spectra

2016 ◽  
Author(s):  
Stefan Bender ◽  
Miriam Sinnhuber ◽  
Martin Langowski ◽  
John P. Burrows

Abstract. We retrieve nitric monoxide (NO) number densities from measurements from the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY, on Envisat) nominal limb mode (0–91 km). We derive the NO number densities from atmospheric emissions in the gamma bands in the range 230–300 nm, measured by the SCIAMACHY ultra-violet (UV) channel 1. We adapt the NO retrieval from the mesosphere and lower thermosphere mode (MLT, 50–150 km) (Bender et al., 2013), including the same 3-D ray tracing, 2-D retrieval grid, and regularisations with respect to altitude and latitude. Since the nominal mode limb scans extend only to about 91 km, we use NO densities in the lower thermosphere (above 92 km) derived from empirical models as a priori input. As priors we use the NOEM model (Marsh et al., 2004) and a regression model derived from the MLT NO data comparison (Bender et al., 2015). Our algorithm yields meaningful NO number densities from 60 km to 85 km from the SCIAMACHY nominal limb mode scans. Using a priori input substantially reduces the misidentification of NO from the lower thermosphere, where no direct limb measurements are available. We achieve a vertical resolution of 5–10 km in the altitude range 65–80 km. Analysing all SCIAMACHY nominal limb scans provides almost ten years (from August 2002 to April 2012) of daily NO measurements in this altitude range. This provides a unique data record of NO in the upper atmosphere and is invaluable to constrain NO in the mesosphere, in particular for testing and validating chemistry climate models during this period.

2017 ◽  
Vol 10 (1) ◽  
pp. 209-220 ◽  
Author(s):  
Stefan Bender ◽  
Miriam Sinnhuber ◽  
Martin Langowski ◽  
John P. Burrows

Abstract. We present a retrieval algorithm for nitric oxide (NO) number densities from measurements from the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY, on Envisat) nominal limb mode (0–91 km). The NO number densities are derived from atmospheric emissions in the gamma bands in the range 230–300 nm, measured by the SCIAMACHY ultra-violet (UV) channel 1. The retrieval is adapted from the mesosphere and lower thermosphere mode (MLT, 50–150 km) NO retrieval (Bender et al., 2013), including the same 3-D ray tracing, 2-D retrieval grid, and regularisations with respect to altitude and latitude.Since the nominal mode limb scans extend only to about 91 km, we use NO densities in the lower thermosphere (above 92 km), derived from empirical models, as a priori input. The priors are the Nitric Oxide Empirical Model (NOEM; Marsh et al., 2004) and a regression model derived from the MLT NO data comparison (Bender et al., 2015). Our algorithm yields plausible NO number densities from 60 to 85 km from the SCIAMACHY nominal limb mode scans. Using a priori input substantially reduces the incorrect attribution of NO from the lower thermosphere, where no direct limb measurements are available. The vertical resolution lies between 5 and 10 km in the altitude range 65–80 km.Analysing all SCIAMACHY nominal limb scans provides almost 10 years (from August 2002 to April 2012) of daily NO measurements in this altitude range. This provides a unique data record of NO in the upper atmosphere and is invaluable for constraining NO in the mesosphere, in particular for testing and validating chemistry climate models during this period.


2013 ◽  
Vol 6 (9) ◽  
pp. 2521-2531 ◽  
Author(s):  
S. Bender ◽  
M. Sinnhuber ◽  
J. P. Burrows ◽  
M. Langowski ◽  
B. Funke ◽  
...  

Abstract. We use the ultra-violet (UV) spectra in the range 230–300 nm from the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) to retrieve the nitric oxide (NO) number densities from atmospheric emissions in the gamma-bands in the mesosphere and lower thermosphere. Using 3-D ray tracing, a 2-D retrieval grid, and regularisation with respect to altitude and latitude, we retrieve a whole semi-orbit simultaneously for the altitude range from 60 to 160 km. We present details of the retrieval algorithm, first results, and initial comparisons to data from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS). Our results agree on average well with MIPAS data and are in line with previously published measurements from other instruments. For the time of available measurements in 2008–2011, we achieve a vertical resolution of 5–10 km in the altitude range 70–140 km and a horizontal resolution of about 9° from 60° S–60° N. With this we have independent measurements of the NO densities in the mesosphere and lower thermosphere with approximately global coverage. This data can be further used to validate climate models or as input for them.


2013 ◽  
Vol 6 (2) ◽  
pp. 3611-3642
Author(s):  
S. Bender ◽  
M. Sinnhuber ◽  
J. P. Burrows ◽  
M. Langowski ◽  
B. Funke ◽  
...  

Abstract. We use the ultra-violett (UV) spectra in the range 230–300 nm from the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) to retrieve the nitric oxide (NO) number densities from atmospheric emissions in the gamma-bands in the mesosphere and lower thermosphere. Using 3-D ray tracing, a 2-D retrieval grid, and regularisation with respect to altitude and latitude, we retrieve a whole semi-orbit simultaneously for the altitude range from 60 to 160 km. We present details of the retrieval algorithm, first results, and initial comparisons to data from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS). Our results agree on average well with MIPAS data and are compatible with previously published measurements from other instruments. For the time of available measurements in 2008–2011, we achieve a vertical resolution of 5–10 km in the altitude range 70–140 km and a horizontal resolution of about 9° from 60° S–60° N. With this we have independent measurements of the NO densities in the mesosphere and lower thermosphere with approximately global coverage.


1998 ◽  
Vol 16 (10) ◽  
pp. 1180-1189 ◽  
Author(s):  
T. Nygrén ◽  
M. J. Taylor ◽  
M. S. Lehtinen ◽  
M. Markkanen

Abstract. It is pointed out that observations of periodic nightglow structures give excellent information on atmospheric gravity waves in the mesosphere and lower thermosphere. The periods, the horizontal wavelengths and the phase speeds of the waves can be determined from airglow images and, using several cameras, the approximate altitude of the luminous layer can also be determined by triangulation. In this paper the possibility of applying tomographic methods for reconstructing the airglow structures is investigated using numerical simulations. A ground-based chain of cameras is assumed, two-dimensional airglow models in the vertical plane above the chain are constructed, and simulated data are calculated by integrating the models along a great number of rays with different elevation angles for each camera. After addition of random noise, these data are then inverted to obtain reconstructions of the models. A tomographic analysis package originally designed for satellite radiotomography is used in the inversion. The package is based on a formulation of stochastic inversion which allows the input of a priori information to the solver in terms of regularization variances. The reconstruction is carried out in two stages. In the first inversion, constant regularization variances are used within a wide altitude range. The results are used in determining the approximate altitude range of the airglow structures. Then, in the second inversion, constant non-zero regularization variances are used inside this region and zero variances outside it. With this method reliable reconstructions of the models are obtained. The number of cameras as well as their separations are varied in order to find out the limitations of the method.Key words. Tomography · Airglow · Mesopause · Gravity waves


2018 ◽  
Vol 11 (1) ◽  
pp. 473-487 ◽  
Author(s):  
Amirmahdi Zarboo ◽  
Stefan Bender ◽  
John P. Burrows ◽  
Johannes Orphal ◽  
Miriam Sinnhuber

Abstract. We present the retrieved volume emission rates (VERs) from the airglow of both the daytime and twilight O2(1Σ) band and O2(1Δ) band emissions in the mesosphere and lower thermosphere (MLT). The SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY (SCIAMACHY) onboard the European Space Agency Envisat satellite observes upwelling radiances in limb-viewing geometry during its special MLT mode over the range 50–150 km. In this study we use the limb observations in the visible (595–811 nm) and near-infrared (1200–1360 nm) bands. We have investigated the daily mean latitudinal distributions and the time series of the retrieved VER in the altitude range from 53 to 149 km. The maximal observed VERs of O2(1Δ) during daytime are typically 1 to 2 orders of magnitude larger than those of O2(1Σ). The latter peaks at around 90 km, whereas the O2(1Δ) emissivity decreases with altitude, with the largest values at the lower edge of the observations (about 53 km). The VER values in the upper mesosphere (above 80 km) are found to depend on the position of the sun, with pronounced high values occurring during summer for O2(1Δ). O2(1Σ) emissions show additional high values at polar latitudes during winter and spring. These additional high values are presumably related to the downwelling of atomic oxygen after large sudden stratospheric warmings (SSWs). Accurate measurements of the O2(1Σ) and O2(1Δ) airglow, provided that the mechanism of their production is understood, yield valuable information about both the chemistry and dynamics in the MLT. For example, they can be used to infer the amounts and distribution of ozone, solar heating rates, and temperature in the MLT.


2018 ◽  
Vol 18 (12) ◽  
pp. 9075-9089 ◽  
Author(s):  
Koen Hendrickx ◽  
Linda Megner ◽  
Daniel R. Marsh ◽  
Christine Smith-Johnsen

Abstract. A reservoir of nitric oxide (NO) in the lower thermosphere efficiently cools the atmosphere after periods of enhanced geomagnetic activity. Transport from this reservoir to the stratosphere within the winter polar vortex allows NO to deplete ozone levels and thereby affect the middle atmospheric heat budget. As more climate models resolve the mesosphere and lower thermosphere (MLT) region, the need for an improved representation of NO-related processes increases. This work presents a detailed comparison of NO in the Antarctic MLT region between observations made by the Solar Occultation for Ice Experiment (SOFIE) instrument on-board the Aeronomy of Ice in the Mesosphere (AIM) satellite and simulations performed by the Whole Atmosphere Community Climate Model with Specified Dynamics (SD-WACCM). We investigate 8 years of SOFIE observations, covering the period 2007–2015, and focus on the Southern Hemisphere (SH), rather than on dynamical variability in the Northern Hemisphere (NH) or a specific geomagnetic perturbed event. The morphology of the simulated NO is in agreement with observations though the long-term mean is too high and the short-term variability is too low in the thermosphere. Number densities are more similar during winter, though the altitude of peak NO density, which reaches between 102 and 106 km in WACCM and between 98 and 104 km in SOFIE, is most separated during winter. Using multiple linear regression (MLR) and superposed epoch analysis (SEA) methods, we investigate how well the NO production and transport are represented in the model. The impact of geomagnetic activity is shown to drive NO variations in the lower thermosphere similarly across both datasets. The dynamical transport from the lower thermosphere into the mesosphere during polar winter is found to agree very well with a descent rate of about 2.2 km day−1 in the 80–110 km region in both datasets. The downward-transported NO fluxes are, however, too low in WACCM, which is likely due to medium energy electrons (MEE) and D-region ion chemistry that are not represented in the model.


2017 ◽  
Vol 10 (8) ◽  
pp. 2989-3006 ◽  
Author(s):  
Martin P. Langowski ◽  
Christian von Savigny ◽  
John P. Burrows ◽  
Didier Fussen ◽  
Erin C. M. Dawkins ◽  
...  

Abstract. During the last decade, several limb sounding satellites have measured the global sodium (Na) number densities in the mesosphere and lower thermosphere (MLT). Datasets are now available from Global Ozone Monitoring by Occultation of Stars (GOMOS), the SCanning Imaging Absorption spectroMeter for Atmospheric CHartography (SCIAMACHY) (both on Envisat) and the Optical Spectrograph and InfraRed Imager System (OSIRIS) (on Odin). Furthermore, global model simulations of the Na layer in the MLT simulated by the Whole Atmosphere Community Climate Model, including the Na species (WACCM-Na), are available. In this paper, we compare these global datasets.The observed and simulated monthly averages of Na vertical column densities agree reasonably well with each other. They show a clear seasonal cycle with a summer minimum most pronounced at the poles. They also show signs of a semi-annual oscillation in the equatorial region. The vertical column densities vary from 0. 5  ×  109 to 7  ×  109 cm−2 near the poles and from 3  ×  109 to 4  ×  109 cm−2 at the Equator. The phase of the seasonal cycle and semi-annual oscillation shows small differences between the Na amounts retrieved from different instruments. The full width at half maximum of the profiles is 10 to 16 km for most latitudes, but significantly smaller in the polar summer. The centroid altitudes of the measured sodium profiles range from 89 to 95 km, whereas the model shows on average 2 to 4 km lower centroid altitudes. This may be explained by the mesopause being 3 km lower in the WACCM simulations than in measurements. Despite this global 2–4 km shift, the model captures well the latitudinal and temporal variations. The variation of the WACCM dataset during the year at different latitudes is similar to the one of the measurements. Furthermore, the differences between the measured profiles with different instruments and therefore different local times (LTs) are also present in the model-simulated profiles. This capturing of latitudinal and temporal variations is also found for the vertical column densities and profile widths.


2017 ◽  
Author(s):  
Amirmahdi Zarboo ◽  
Stefan Bender ◽  
John P. Burrows ◽  
Johannes Orphal ◽  
Miriam Sinnhuber

Abstract. We present the retrieved volume emission rates (VER) from the airglow of both the daytime and twilight O2(1Σ) band and O2(1Δ) band emissions in the mesosphere/lower thermosphere (MLT). The SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) on-board the European Space Agency Envisat satellite observes upwelling radiances in limb viewing geometry during its special MLT mode over the range 50 to 150 km. In this study we use the limb observations in the visible (595–811 nm) and near infrared (1200–1360 nm) bands. We have investigated the daily mean latitudinal distributions and the time series of the retrieved VER in the altitude range from 53 to 149 km. The maximal observed VER of O2(1Δ) during daytime are typically 1 to 2 orders of magnitude larger than those of O2(1Σ). The latter peaks at around 90 km, whereas the O2(1Δ) emissivity decreases with altitude, with the largest values at the lower edge of the observations (about 53 km). The VER values in the upper mesosphere (above 80 km) are found to depend on the position of the sun, with pronounced high values occurring during summer for O2(1Δ). O2(1Σ) shows secondary maxima during winter and spring, which are related to the downwelling of atomic oxygen after large sudden stratospheric warmings (SSW). Observations of O2(1Δ) and O2(1Σ) airglow provide valuable information about both the chemistry and dynamics in the MLT and can be used to infer the amounts and distribution of ozone, solar heating rates and temperature in the MLT.


2005 ◽  
Vol 62 (12) ◽  
pp. 4384-4399 ◽  
Author(s):  
Rolando R. Garcia ◽  
Ruth Lieberman ◽  
James M. Russell ◽  
Martin G. Mlynczak

Abstract Observations made by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on board NASA’s Thermosphere–Ionosphere–Mesosphere Energetics and Dynamics (TIMED) satellite have been processed using Salby’s fast Fourier synoptic mapping (FFSM) algorithm. The mapped data provide a first synoptic look at the mean structure and traveling waves of the mesosphere and lower thermosphere (MLT) since the launch of the TIMED satellite in December 2001. The results show the presence of various wave modes in the MLT, which reach largest amplitude above the mesopause and include Kelvin and Rossby–gravity waves, eastward-propagating diurnal oscillations (“non-sun-synchronous tides”), and a set of quasi-normal modes associated with the so-called 2-day wave. The latter exhibits marked seasonal variability, attaining large amplitudes during the solstices and all but disappearing at the equinoxes. SABER data also show a strong quasi-stationary Rossby wave signal throughout the middle atmosphere of the winter hemisphere; the signal extends into the Tropics and even into the summer hemisphere in the MLT, suggesting ducting by westerly background zonal winds. At certain times of the year, the 5-day Rossby normal mode and the 4-day wave associated with instability of the polar night jet are also prominent in SABER data.


Sign in / Sign up

Export Citation Format

Share Document