scholarly journals Comparison of OH reactivity measurements in the atmospheric simulation chamber SAPHIR

2017 ◽  
Vol 10 (10) ◽  
pp. 4023-4053 ◽  
Author(s):  
Hendrik Fuchs ◽  
Anna Novelli ◽  
Michael Rolletter ◽  
Andreas Hofzumahaus ◽  
Eva Y. Pfannerstill ◽  
...  

Abstract. Hydroxyl (OH) radical reactivity (kOH) has been measured for 18 years with different measurement techniques. In order to compare the performances of instruments deployed in the field, two campaigns were conducted performing experiments in the atmospheric simulation chamber SAPHIR at Forschungszentrum Jülich in October 2015 and April 2016. Chemical conditions were chosen either to be representative of the atmosphere or to test potential limitations of instruments. All types of instruments that are currently used for atmospheric measurements were used in one of the two campaigns. The results of these campaigns demonstrate that OH reactivity can be accurately measured for a wide range of atmospherically relevant chemical conditions (e.g. water vapour, nitrogen oxides, various organic compounds) by all instruments. The precision of the measurements (limit of detection  < 1 s−1 at a time resolution of 30 s to a few minutes) is higher for instruments directly detecting hydroxyl radicals, whereas the indirect comparative reactivity method (CRM) has a higher limit of detection of 2 s−1 at a time resolution of 10 to 15 min. The performances of the instruments were systematically tested by stepwise increasing, for example, the concentrations of carbon monoxide (CO), water vapour or nitric oxide (NO). In further experiments, mixtures of organic reactants were injected into the chamber to simulate urban and forested environments. Overall, the results show that the instruments are capable of measuring OH reactivity in the presence of CO, alkanes, alkenes and aromatic compounds. The transmission efficiency in Teflon inlet lines could have introduced systematic errors in measurements for low-volatile organic compounds in some instruments. CRM instruments exhibited a larger scatter in the data compared to the other instruments. The largest differences to reference measurements or to calculated reactivity were observed by CRM instruments in the presence of terpenes and oxygenated organic compounds (mixing ratio of OH reactants were up to 10 ppbv). In some of these experiments, only a small fraction of the reactivity is detected. The accuracy of CRM measurements is most likely limited by the corrections that need to be applied to account for known effects of, for example, deviations from pseudo first-order conditions, nitrogen oxides or water vapour on the measurement. Methods used to derive these corrections vary among the different CRM instruments. Measurements taken with a flow-tube instrument combined with the direct detection of OH by chemical ionisation mass spectrometry (CIMS) show limitations in cases of high reactivity and high NO concentrations but were accurate for low reactivity (< 15 s−1) and low NO (< 5 ppbv) conditions.

2017 ◽  
Author(s):  
Hendrik Fuchs ◽  
Anna Novelli ◽  
Michael Rolletter ◽  
Andreas Hofzumahaus ◽  
Eva Y. Pfannerstill ◽  
...  

Abstract. Hydroxyl (OH) radical reactivity (kOH) has been measured for 18 years with different measurement techniques. In order to compare the performances of instruments deployed in the field, two campaigns were conducted performing experiments in the atmospheric simulation chamber SAPHIR at Forschungszentrum Jülich in October 2015 and April 2016. Chemical conditions were chosen either to be representative of the atmosphere or to test potential limitations of instruments. All types of instruments that are currently used for atmospheric measurements took part in one of the two campaigns. The results of these campaigns demonstrate that OH reactivity can be accurately measured for a wide range of atmospherically relevant chemical conditions (e.g. water vapor, nitrogen oxides, various organic compounds) by all instruments. The precision of the measurements (limit of detection


2019 ◽  
Vol 12 (6) ◽  
pp. 3137-3149 ◽  
Author(s):  
Xiaoxi Liu ◽  
Benjamin Deming ◽  
Demetrios Pagonis ◽  
Douglas A. Day ◽  
Brett B. Palm ◽  
...  

Abstract. Recent work has quantified the delay times in measurements of volatile organic compounds (VOCs) caused by the partitioning between the gas phase and the surfaces of the inlet tubing and instrument itself. In this study we quantify wall partitioning effects on time responses and transmission of multifunctional, semivolatile, and intermediate-volatility organic compounds (S/IVOCs) with saturation concentrations (C∗) between 100 and 104 µg m−3. The instrument delays of several chemical ionization mass spectrometer (CIMS) instruments increase with decreasing C∗, ranging from seconds to tens of minutes, except for the NO3- CIMS where it is always on the order of seconds. Six different tubing materials were tested. Teflon, including PFA, FEP, and conductive PFA, performs better than metals and Nafion in terms of both delay time and transmission efficiency. Analogous to instrument responses, tubing delays increase as C∗ decreases, from less than a minute to >100 min. The delays caused by Teflon tubing vs. C∗ can be modeled using the simple chromatography model of Pagonis et al. (2017). The model can be used to estimate the equivalent absorbing mass concentration (Cw) of each material, and to estimate delays under different flow rates and tubing dimensions. We also include time delay measurements from a series of small polar organic and inorganic analytes in PFA tubing measured by CIMS. Small polar molecules behave differently than larger organic ones, with their delays being predicted by their Henry's law constants instead of their C∗, suggesting the dominance of partitioning to small amounts of water on sampling surfaces as a result of their polarity and acidity properties. PFA tubing has the best performance for gas-only sampling, while conductive PFA appears very promising for sampling S/IVOCs and particles simultaneously. The observed delays and low transmission both affect the quality of gas quantification, especially when no direct calibration is available. Improvements in sampling and instrument response are needed for fast atmospheric measurements of a wide range of S/IVOCs (e.g., by aircraft or for eddy covariance). These methods and results are also useful for more general characterization of surface–gas interactions.


2019 ◽  
Author(s):  
Xiaoxi Liu ◽  
Benjamin Deming ◽  
Demetrios Pagonis ◽  
Douglas A. Day ◽  
Brett B. Palm ◽  
...  

Abstract. Recent work has quantified the delay times in measurements of volatile organic compounds (VOCs) caused by the partitioning between the gas phase and the surfaces of the inlet tubing and instrument itself. In this study we quantify wall partitioning effects on time responses and transmission of multi-functional, semivolatile and intermediate-volatility organic compounds (S/IVOCs) with saturation concentrations (C*) between 100 and 104 µg m−3. The instrument delays of several chemical ionization mass spectrometer (CIMS) instruments increase with decreasing C*, ranging from seconds to tens of minutes, except for the NO3−-CIMS where it is always on the order of seconds. Six different tubing materials were tested. Teflon, including PFA, FEP, and conductive PFA, performs better than metals and Nafion in terms of both delay time and transmission efficiency. Analogous to instrument responses, tubing delays increase as C* decreases, from less than a minute to > 100 min. The delays caused by Teflon tubing vs. C* can be modeled using the simple chromatography model of Pagonis et al. (2017). The model can be used to estimate the equivalent absorbing mass concentration (Cw) of each material, and to estimate delays under different flow rates and tubing dimensions. We also include time delay measurements from a series of small polar organic and inorganic analytes in PFA tubing measured by CIMS. Small polar molecules behave differently than larger organic ones, with their delays being predicted by their Henry’s law constants instead of their C*, suggesting the dominance of partitioning to small amounts of water on sampling surfaces as a result of their polarity and acidity properties. PFA tubing has the best performance for gas-only sampling, while conductive PFA appears very promising for sampling S/IVOCs and particles simultaneously. The observed delays and low transmission both affect the quality of gas quantification, especially when no direct calibration is available. Improvements in sampling and instrument response are needed for fast atmospheric measurements of a wide range of S/IVOCs (e.g., by aircraft or for eddy covariance). These methods and results are also useful for more general characterization of surface/gas interactions.


2017 ◽  
Vol 17 (18) ◽  
pp. 11355-11388 ◽  
Author(s):  
Cécile Debevec ◽  
Stéphane Sauvage ◽  
Valérie Gros ◽  
Jean Sciare ◽  
Michael Pikridas ◽  
...  

Abstract. More than 7000 atmospheric measurements of over 60 C2 − C16 volatile organic compounds (VOCs) were conducted at a background site in Cyprus during a 1-month intensive field campaign held in March 2015. This exhaustive dataset consisted of primary anthropogenic and biogenic VOCs, including a wide range of source-specific tracers, and oxygenated VOCs (with various origins) that were measured online by flame ionization detection–gas chromatography and proton transfer mass spectrometry. Online submicron aerosol chemical composition was performed in parallel using an aerosol mass spectrometer. This study presents the high temporal variability in VOCs and their associated sources. A preliminary analysis of their time series was performed on the basis of independent tracers (NO, CO, black carbon), meteorological data and the clustering of air mass trajectories. Biogenic compounds were mainly attributed to a local origin and showed compound-specific diurnal cycles such as a daily maximum for isoprene and a nighttime maximum for monoterpenes. Anthropogenic VOCs as well as oxygenated VOCs displayed higher mixing ratios under the influence of continental air masses (i.e., western Asia), indicating that long-range transport significantly contributed to the VOC levels in the area. Source apportionment was then conducted on a database of 20 VOCs (or grouped VOCs) using a source receptor model. The positive matrix factorization and concentration field analyses were hence conducted to identify and characterize covariation factors of VOCs that were representative of primary emissions as well as chemical transformation processes. A six-factor PMF solution was selected, namely two primary biogenic factors (relative contribution of 43 % to the total mass of VOCs) for different types of emitting vegetation; three anthropogenic factors (short-lived combustion source, evaporative sources, industrial and evaporative sources; 21 % all together), identified as being either of local origin or from more distant emission zones (i.e., the south coast of Turkey); and a last factor (36 %) associated with regional background pollution (air masses transported both from the Western and Eastern Mediterranean regions). One of the two biogenic and the regional background factors were found to be the largest contributors to the VOC concentrations observed at our sampling site. Finally, a combined analysis of VOC PMF factors with source-apportioned organic aerosols (OAs) helped to better distinguish between anthropogenic and biogenic influences on the aerosol and gas phase compositions. The highest OA concentrations were observed when the site was influenced by air masses rich in semi-volatile OA (less oxidized aerosols) originating from the southwest of Asia, in contrast with OA factor contributions associated with the remaining source regions. A reinforcement of secondary OA formation also occurred due to the intense oxidation of biogenic precursors.


2021 ◽  
Vol 14 (8) ◽  
pp. 5271-5297
Author(s):  
Corinna Kloss ◽  
Vicheith Tan ◽  
J. Brian Leen ◽  
Garrett L. Madsen ◽  
Aaron Gardner ◽  
...  

Abstract. We describe the Airborne Mid-Infrared Cavity enhanced Absorption spectrometer (AMICA) designed to measure trace gases in situ on research aircraft using Off-Axis Integrated Cavity Output Spectroscopy (OA-ICOS). AMICA contains two largely independent and exchangeable OA-ICOS arrangements, allowing for the simultaneous measurement of multiple substances in different infrared wavelength windows tailored to scientific questions related to a particular flight mission. Three OA-ICOS setups have been implemented with the aim to measure OCS, CO2, CO, and H2O at 2050 cm−1; O3, NH3, and CO2 at 1034 cm−1; and HCN, C2H2, and N2O at 3331 cm−1. The 2050 cm−1 setup has been characterized in the laboratory and successfully used for atmospheric measurements during two campaigns with the research aircraft M55 Geophysica and one with the German HALO (High Altitude and Long Range Research Aircraft). For OCS and CO, data for scientific use have been produced with 5 % accuracy (15 % for CO below 60 ppb, due to additional uncertainties introduced by dilution of the standard) at typical atmospheric mixing ratios and laboratory-measured 1σ precision of 30 ppt for OCS and 3 ppb for CO at 0.5 Hz time resolution. For CO2, high absorption at atmospheric mixing ratios leads to saturation effects that limit sensitivity and complicate the spectral analysis, resulting in too large uncertainties for scientific use. For H2O, absorption is too weak to be measured at mixing ratios below 100 ppm. By further reducing electrical noise and improving the treatment of the baseline in the spectral retrieval, we hope to improve precision for OCS and CO, resolve the issues inhibiting useful CO2 measurements, and lower the detection limit for H2O. The 1035 and 3331 cm−1 arrangements have only partially been characterized and are still in development. Although both setups have been flown and recorded infrared spectra during field campaigns, no data for scientific use have yet been produced due to unresolved deviations of the retrieved mixing ratios to known standards (O3) or insufficient sensitivity (NH3, HCN, C2H2, N2O). The ∼100 kg instrument with a typical in-flight power consumption of about 500 VA is dimensioned to fit into one 19 in. rack typically used for deployment inside the aircraft cabin. Its rugged design and a pressurized and temperature-stabilized compartment containing the sensitive optical and electronic hardware also allow for deployment in payload bays outside the pressurized cabin even at high altitudes of 20 km. A sample flow system with two parallel proportional solenoid valves of different size orifices allows for precise regulation of cavity pressure over the wide range of inlet port pressures encountered between the ground and maximum flight altitudes. Sample flow of the order of 1 SLM (standard litre per minute) maintained by an exhaust-side pump limits the useful time resolution to about 2.5 s (corresponding to the average cavity flush time), equivalent to 500 m distance at a typical aircraft speed of 200 m s−1.


2021 ◽  
Vol 14 (6) ◽  
pp. 4239-4253
Author(s):  
Marvin Glowania ◽  
Franz Rohrer ◽  
Hans-Peter Dorn ◽  
Andreas Hofzumahaus ◽  
Frank Holland ◽  
...  

Abstract. Three instruments that use different techniques to measure gaseous formaldehyde (HCHO) concentrations were compared in experiments in the atmospheric simulation chamber SAPHIR at Forschungszentrum Jülich. One instrument (AL4021, Aero-Laser GmbH) detects HCHO using the wet-chemical Hantzsch reaction (for efficient gas-phase stripping), chemical conversion and fluorescence measurement. An internal HCHO permeation source allows for daily calibrations. This instrument was characterized by sulfuric acid titration (overall accuracy 8.6 %) and yields measurements with a time resolution of 90 s and a limit of detection (3σ) of 0.3 ppbv. In addition, a new commercial instrument that makes use of cavity ring-down spectroscopy (CRDS) determined the concentrations of HCHO, water vapour, and methane (G2307, Picarro, Inc.). Its limit of detection (3σ) is specified as 0.3 ppbv for an integration time of 300 s, and its accuracy is limited by the drift of the zero signal (manufacturer specification 1.5 ppbv). A custom-built high-resolution laser differential optical absorption spectroscopy (DOAS) instrument provided HCHO measurements with a limit of detection (3σ) of 0.9 ppbv and an accuracy of 7 %​​​​​​​ using an optical multiple reflection cell. The measurements were conducted from June to December 2019 in experiments in which either ambient air flowed through the chamber or the photochemical degradation of organic compounds in synthetic air was investigated. Measured HCHO concentrations were up to 8 ppbv. Various mixtures of organic compounds, water vapour, nitrogen oxides and ozone were present in these experiments. Results demonstrate the need to correct the baseline in measurements performed by the Hantzsch instrument to compensate for drifting background signals. Corrections were equivalent to HCHO mixing ratios in the range of 0.5–1.5 ppbv. The baseline of the CRDS instrument showed a linear dependence on the water vapour mixing ratio with a slope of (-11.20±1.60) ppbv %−1 below and (-0.72±0.08) ppbv %−1 above a water vapour mixing ratio of 0.2 %. In addition, the intercepts of these linear relationships drifted within the specification of the instrument (1.5 ppbv) over time but appeared to be equal for all water mixing ratios. Regular zero measurements are needed to account for the changes in the instrument zero. After correcting for the baselines of measurements by the Hantzsch and the CRDS instruments, linear regression analysis of measurements from all three instruments in experiments with ambient air indicated good agreement, with slopes of between 0.98 and 1.08 and negligible intercepts (linear correlation coefficients R2>0.96). The new small CRDS instrument measures HCHO with good precision and is accurate if the instrument zero is taken into account. Therefore, it can provide measurements with similar accuracy to the DOAS instrument but with slightly reduced precision compared to the Hantzsch instrument.


2021 ◽  
Author(s):  
Marvin Glowania ◽  
Franz Rohrer ◽  
Hans-Peter Dorn ◽  
Andreas Hofzumahaus ◽  
Frank Holland ◽  
...  

Abstract. Three instruments using different techniques measuring gaseous formaldehyde (HCHO) concentrations were compared in experiments in the atmospheric simulation chamber SAPHIR at Forschungszentrum Jülich. One instrument detected HCHO by using the wet-chemical Hantzsch reaction for efficient gas-phase stripping, chemical conversion and fluorescence measurement (AL4021, Aero Laser GmbH). An internal permeation HCHO source allows for daily calibrations. It was characterized by sulfuric acid titration (overall accuracy 8.5 %). Measurements have a time resolution of 90 s with a limit of detection (3 σ) of 0.3 ppbv. In addition, a new commercial instrument making use of cavity ring-down spectroscopy (CRDS) determined concentrations of HCHO, water, and methane (G2307, Picarro Inc.). The limit of detection (3 σ) is specified as 0.3 ppbv for an integration time of 300 s and the accuracy is limited by the drift of the zero signal (manufacturer specification 1.5 ppbv). A custom-built, high-resolution laser differential optical absorption spectroscopy (DOAS) instrument provided HCHO measurements with a limit of detection (3 σ) of 0.9 ppbv and an accuracy of 6 % using an optical multiple reflection cell. The measurements were conducted from June to December 2019 in experiments in which either ambient air was flowed through the chamber or the photochemical degradation of organic compounds in synthetic air was investigated. Measured HCHO concentrations were up to 8 ppbv. Various mixtures of organic compounds, water vapour, nitrogen oxides, and ozone concentrations were present in these experiments. Results demonstrate the need to correct the baseline in the measurements of the Hantzsch instrument to compensate for drifting background signals. Corrections were equivalent to HCHO mixing ratios in the range of 0.5 to 1.5 ppbv. The baseline of the CRDS instrument showed a linear dependence on the water-vapour mixing ratio with different slopes of (−11.20 ± 1.60) ppbv %−1 and (−0.72 ± 0.08) ppbv %−1 above and below 0.2 % water vapour mixing ratio, respectively. In addition, the intercept of these linear relationships drifted with time within the specification of the instrument (1.5 ppbv), but appeared to be equal for all water mixing ratios. Regular zero measurements are required to account for the changes in the instrument zero. After correcting for the baselines of measurements by the Hantzsch and the CRDS instruments, a linear regression analysis of measurements from all three instruments in experiments with ambient air results in a good agreement with slopes between 0.93 and 1.07 with negligible intercepts (linear correlation coefficients R2 > 0.96). The new, small-sized CRDS instrument measures HCHO with a good precision and is accurate, if the instrument zero is taken into account. Therefore, it can provide accurate and calibration-free measurements like the DOAS instrument with a slightly reduced precision compared to the Hantzsch instrument.


2019 ◽  
Vol 15 (3) ◽  
pp. 273-279
Author(s):  
Shweta G. Rangari ◽  
Nishikant A. Raut ◽  
Pradip W. Dhore

Background:The unstable and/or toxic degradation products may form due to degradation of drug which results into loss of therapeutic activity and lead to life threatening condition. Hence, it is important to establish the stability characteristics of drug in various conditions such as in temperature, light, oxidising agent and susceptibility across a wide range of pH values.Introduction:The aim of the proposed study was to develop simple, sensitive and economic stability indicating high performance thin layer chromatography (HPTLC) method for the quantification of Amoxapine in the presence of degradation products.Methods:Amoxapine and its degraded products were separated on precoated silica gel 60F254 TLC plates by using mobile phase comprising of methanol: toluene: ammonium acetate (6:3:1, v/v/v). The densitometric evaluation was carried out at 320 nm in reflectance/absorbance mode. The degradation products obtained as per ICH guidelines under acidic, basic and oxidative conditions have different Rf values 0.12, 0.26 and 0.6 indicating good resolution from each other and pure drug with Rf: 0.47. Amoxapine was found to be stable under neutral, thermal and photo conditions.Results:The method was validated as per ICH Q2 (R1) guidelines in terms of accuracy, precision, ruggedness, robustness and linearity. A good linear relationship between concentration and response (peak area and peak height) over the range of 80 ng/spot to 720 ng/spot was observed from regression analysis data showing correlation coefficient 0.991 and 0.994 for area and height, respectively. The limit of detection (LOD) and limit of quantitation (LOQ) for area were found to be 1.176 ng/mL and 3.565 ng/mL, whereas for height, 50.063 ng/mL and 151.707 ng/mL respectively.Conclusion:The statistical analysis confirmed the accuracy, precision and selectivity of the proposed method which can be effectively used for the analysis of amoxapine in the presence of degradation products.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1961
Author(s):  
Francesco Arcadio ◽  
Luigi Zeni ◽  
Aldo Minardo ◽  
Caterina Eramo ◽  
Stefania Di Di Ronza ◽  
...  

In a specific biosensing application, a nanoplasmonic sensor chip has been tested by an experimental setup based on an aluminum holder and two plastic optical fibers used to illuminate and collect the transmitted light. The studied plasmonic probe is based on gold nanograting, realized on the top of a Poly(methyl methacrylate) (PMMA) chip. The PMMA substrate could be considered as a transparent substrate and, in such a way, it has been already used in previous work. Alternatively, here it is regarded as a slab waveguide. In particular, we have deposited upon the slab surface, covered with a nanograting, a synthetic receptor specific for bovine serum albumin (BSA), to test the proposed biosensing approach. Exploiting this different experimental configuration, we have determined how the orientation of the nanostripes forming the grating pattern, with respect to the direction of the input light (longitudinal or orthogonal), influences the biosensing performances. For example, the best limit of detection (LOD) in the BSA detection that has been obtained is equal to 23 pM. Specifically, the longitudinal configuration is characterized by two observable plasmonic phenomena, each sensitive to a different BSA concentration range, ranging from pM to µM. This aspect plays a key role in several biochemical sensing applications, where a wide working range is required.


Sign in / Sign up

Export Citation Format

Share Document