scholarly journals Validation of the IASI FORLI/EUMETSAT ozone products using satellite (GOME-2), ground-based (Brewer–Dobson, SAOZ, FTIR) and ozonesonde measurements

2018 ◽  
Vol 11 (9) ◽  
pp. 5125-5152 ◽  
Author(s):  
Anne Boynard ◽  
Daniel Hurtmans ◽  
Katerina Garane ◽  
Florence Goutail ◽  
Juliette Hadji-Lazaro ◽  
...  

Abstract. This paper assesses the quality of IASI (Infrared Atmospheric Sounding Interferometer)/Metop-A (IASI-A) and IASI/Metop-B (IASI-B) ozone (O3) products (total and partial O3 columns) retrieved with the Fast Optimal Retrievals on Layers for IASI Ozone (FORLI-O3; v20151001) software for 9 years (2008–July 2017) through an extensive intercomparison and validation exercise using independent observations (satellite, ground-based and ozonesonde). Compared with the previous version of FORLI-O3 (v20140922), several improvements have been introduced in FORLI-O3 v20151001, including absorbance look-up tables recalculated to cover a larger spectral range, with additional numerical corrections. This leads to a change of ∼4 % in the total ozone column (TOC) product, which is mainly associated with a decrease in the retrieved O3 concentration in the middle stratosphere (above 30 hPa/25 km). IASI-A and IASI-B TOCs are consistent, with a global mean difference of less than 0.3 % for both daytime and nighttime measurements; IASI-A is slightly higher than IASI-B. A global difference of less than 2.4 % is found for the tropospheric (TROPO) O3 column product (IASI-A is lower than IASI-B), which is partly due to a temporary issue related to the IASI-A viewing angle in 2015. Our validation shows that IASI-A and IASI-B TOCs are consistent with GOME-2 (Global Ozone Monitoring Experiment-2), Dobson, Brewer, SAOZ (Système d'Analyse par Observation Zénithale) and FTIR (Fourier transform infrared) TOCs, with global mean differences in the range of 0.1 %–2 % depending on the instruments compared. The worst agreement with UV–vis retrieved TOC (satellite and ground) is found at the southern high latitudes. The IASI-A and ground-based TOC comparison for the period from 2008 to July 2017 shows the long-term stability of IASI-A, with insignificant or small negative drifts of 1 %–3 % decade−1. The comparison results of IASI-A and IASI-B against smoothed FTIR and ozonesonde partial O3 columns vary with altitude and latitude, with the maximum standard deviation being seen for the 300–150 hPa column (20 %–40 %) due to strong ozone variability and large total retrievals errors. Compared with ozonesonde data, the IASI-A and IASI-B O3 TROPO column (defined as the column between the surface and 300 hPa) is positively biased in the high latitudes (4 %–5 %) and negatively biased in the midlatitudes and tropics (11 %–13 % and 16 %–19 %, respectively). The IASI-A-to-ozonesonde TROPO comparison for the period from 2008 to 2016 shows a significant negative drift in the Northern Hemisphere of -8.6±3.4 % decade−1, which is also found in the IASI-A-to-FTIR TROPO comparison. When considering the period from 2011 to 2016, the drift value for the TROPO column decreases and becomes statistically insignificant. The observed negative drifts of the IASI-A TROPO O3 product (8 %–16 % decade−1) over the 2008–2017 period might be taken into consideration when deriving trends from this product and this time period.

2018 ◽  
Author(s):  
Anne Boynard ◽  
Daniel Hurtmans ◽  
Katerina Garane ◽  
Florence Goutail ◽  
Juliette Hadji-Lazaro ◽  
...  

Abstract. This paper assesses the quality of IASI/Metop-A (IASI-A) and IASI/Metop-B (IASI-B) ozone (O3) products (total and partial O3 columns) retrieved with the Fast Optimal Retrievals on Layers for IASI Ozone (FORLI-O3) v20151001 software for nine years (2008–2017) through an extensive inter-comparison and validation exercise using independent observations (satellite, ground-based and ozonesonde). IASI-A and IASI-B Total O3 Columns (TOCs) are generally consistent, with a global mean difference less than 0.3 % for both day- and nighttime measurements, IASI-A being slightly higher than IASI-B. A global difference less than 2.4 % is found for the tropospheric (TROPO) O3 column product (IASI-A being lower than IASI-B), which is partly due to a temporary issue related to IASI-A viewing angle in 2015. Our validation shows that IASI-A and IASI-B TOCs are consistent with GOME-2, Dobson, Brewer and SAOZ retrieved ones, with global mean differences in the range 0.1–2 % depending on the instruments. The IASI-A and ground-based TOC comparison for the period 2008–July 2017 shows good long-term stability (negative trends within 3 % decade−1). The comparison results between IASI-A and IASI-B against smoothed ozonesonde partial O3 columns vary in altitude and latitude, with maximum standard deviation for the 300–150 hPa column (20–40 %) due to strong ozone variability and a priori uncertainty. The worst agreement with the ozonesondes and with UV-vis retrieved TOC [satellite and ground] is found at the southern high latitudes. Compared to ozonesonde data, IASI-A and IASI-B O3 products overestimate the O3 abundance in the stratosphere (up to 20 % for the 150–25 hPa column) and underestimates the O3 abundance in the troposphere (within 10 % for the mid-latitudes and ~ 18 % for the tropics). Based on the period 2011–2016, non-significant drift is found for the northern hemispheric tropospheric columns while a small drift prevails for the period before 2011.


2005 ◽  
Vol 26 (2) ◽  
pp. 100-106 ◽  
Author(s):  
James D.A. Parker ◽  
Donald H. Saklofske ◽  
Laura M. Wood ◽  
Jennifer M. Eastabrook ◽  
Robyn N. Taylor

Abstract. The concept of emotional intelligence (EI) has attracted growing interest from researchers working in various fields. The present study examined the long-term stability (32 months) of EI-related abilities over the course of a major life transition (the transition from high school to university). During the first week of full-time study, a large group of undergraduates completed the EQ-i:Short; 32 months later a random subset of these students (N = 238), who had started their postsecondary education within 24 months of graduating from high school, completed the measures for a second time. The study found EI scores to be relatively stable over the 32-month time period. EI scores were also found to be significantly higher at Time 2; the overall pattern of change in EI-levels was more than can be attributed to the increased age of the participants.


2018 ◽  
Vol 86 (13) ◽  
pp. 301-314
Author(s):  
Maren Rastedt ◽  
Julian Büsselmann ◽  
Tomas Klicpera ◽  
Karsten Reinwald ◽  
Nadine Pilinski ◽  
...  

2020 ◽  
Vol 6 (1) ◽  
pp. 6-9 ◽  
Author(s):  
Juraj Packa ◽  
Vladimir Kujan ◽  
Daniel Štrkula ◽  
Vladimír Šály ◽  
Milan Perný

<span style="font-family: 'Times New Roman',serif; font-size: 10pt; mso-fareast-font-family: 'Times New Roman'; mso-ansi-language: EN-US; mso-fareast-language: EN-US; mso-bidi-language: AR-SA;" lang="EN-US">An important part of the photovoltaic power plants are cable systems. The dielectric properties of cables, reliability and durability depend on quality of production processes, operating conditions and degradation factors, as well. Expected lifetime of cable systems is more than 20-30 years in general. Their failure free operation and long-term stability of properties has a direct impact on the economic return of the investments. According to our experiences the tests in compliance with valid standards are not adequate to verify real life time during operation. Photovoltaic cables intended for use in outdoor applications for the connection between the solar panels and possible connection between panels and inverter were chosen for our experiments. <span style="-ms-layout-grid-mode: line;">The changes </span>of insulation resistance and breakdown voltage caused by some degradation factors, mainly water, are presented. This research was inspired by real failure in operation.</span>


2016 ◽  
Vol 8 ◽  
pp. OJCS.S34837 ◽  
Author(s):  
Róbert Novotný ◽  
Marcela Slavíková ◽  
Jaroslav Hlubocký ◽  
Petr Mitáš ◽  
Jan Hrubý ◽  
...  

Introduction The quality of the life in patients requiring long term hemodialysis is directly proportional to the long-term patency of their vascular access. Basilic vein transposition for vascular access (BAVA) represents a suitable option for creating a tertiary native vascular access for hemodialysis on the upper extremities for patients requiring long term hemodialysis. The purpose of the study is to compare BAVAs with arteriovenous grafts (AVG). Method Data collection was based on selecting all of the patients with BAVA created in the time period in between January 1996 and August 2011. A questionnaire was created and sent to the selected hemodialysis centers. The resulting set of data was statistically analyzed and evaluated. Results In the time period between 1 January 1996 and August 2011, arteriovenous access for hemodialysis was created in 6754 patients (7203 procedures in total). Out of these patients, 175 BAVAs were created. Our patient database of those undergoing the BAVA procedure consisted of 98 females (56%) and 77 males (44%) with an average age of 64.5 years. The prevalence of diabetes mellitus was 60% (105 patients). Primary patency after 12 months was 68.8%, 24 months 59.7%, 36 months 53.8, 48 months 53.8%, and 60 months 50%. Primary assisted patency after 12 months was 89.9%, 24 months 84.6%, 36 months 77.8%, 48 months 77.9%, 60 months 70.8%. Secondary patency after 12 months was 89.4%, 24 months 86.9%, 36 months 81%, 48 months 78.9%, 60 months 75.7%. Twenty-nine BAVAs (16.5%) were obliterated. Conclusion Patients benefit from this type of procedure due to the longer patency of a native arteriovenous access, as well as a lower incidence of infectious complications.


2014 ◽  
Vol 7 (5) ◽  
pp. 4659-4692 ◽  
Author(s):  
W. Bader ◽  
T. Stavrakou ◽  
J.-F. Muller ◽  
S. Reimann ◽  
C. D. Boone ◽  
...  

Abstract. Methanol (CH3OH) is the second most abundant organic compound in the Earth's atmosphere after methane. In this work, we present the first long-term time series of methanol total, lower tropospheric and upper tropospheric-lower stratospheric partial columns derived from the analysis of high resolution Fourier transform infrared solar spectra recorded at the Jungfraujoch station (46.5° N, 3580 m a.s.l.). The retrieval of methanol is very challenging due to strong absorptions of ozone in the region of the selected υ8 band of CH3OH. Two wide spectral intervals have been defined and adjusted in order to maximize the information content. Methanol does not exhibit a significant trend over the 1995–2012 time period, but a strong seasonal modulation characterized by maximum values and variability in June–July, minimum columns in winter and a peak-to-peak amplitude of 130%. In situ measurements performed at the Jungfraujoch and ACE-FTS occultations give similar results for the methanol seasonal variation. The total and lower tropospheric columns are also compared with IMAGESv2 model simulations. There is no systematic bias between the observations and IMAGESv2 but the model underestimates the peak-to-peak amplitude of the seasonal modulations.


2020 ◽  
pp. 146144482093766
Author(s):  
Liesel L Sharabi ◽  
Elisabeth Timmermans

The current mixed-methods study reports the results of a cross-sectional survey of 205 online daters and uses the Investment Model to examine the antecedents of commitment in online dating and users’ decisions to delete their online dating account(s). We hypothesized that the quality of alternatives, investments, and satisfaction with the online dating relationship would mediate the association between online dating intensity and commitment, which, in turn, would predict the intention to terminate an account. The analyses revealed that online dating intensity was associated with greater commitment and a lower likelihood of account termination. There were also specific indirect effects on commitment through the quality of alternatives, investments, and satisfaction, and on termination through investments. Responses to an open-ended question provided more information about users’ decisions to quit online dating. These results point to ways online dating may facilitate the desire for commitment while potentially undermining the long-term stability of relationships.


2020 ◽  
Vol 91 (3) ◽  
pp. 191-195
Author(s):  
Ameni Chok ◽  
Ines Dallel ◽  
Moncef Ommezine ◽  
Samir Tobji ◽  
Adel Ben Amor

2020 ◽  
Author(s):  
Isabelle De Smedt ◽  
Gaia Pinardi ◽  
Corinne Vigouroux ◽  
Steven Compernolle ◽  
Kai Uwe Eichman ◽  
...  

&lt;p&gt;The Sentinel-5 Precursor (S5P) was launched on the 13th of October 2017, with on board the TROPOspheric Monitoring Instrument (TROPOMI). The formaldehyde (HCHO) L2 product is operational since the end of 2018. The prototype of the tropospheric HCHO retrieval algorithm is developed at BIRA-IASB and implemented at the German Aerospace Center (DLR) in the S5P operational processor (De Smedt et al., 2018).&lt;/p&gt;&lt;p&gt;In this work, we investigate the quality of the HCHO tropospheric column product and its validation within the MPC framework (Mission Performance Center) and the S5PVT NIDFORVAL project (S5P NItrogen Dioxide and FORmaldehyde VALidation). Within NIDFORVAL, the S5P HCHO product has been validated using the full FTIR and MAXDOAS dataset. Validation results have been assessed against reported product uncertainties taking into account the full comparison error budget, showing that the product quality reaches its requirements.&lt;/p&gt;&lt;p&gt;Here, we focus on satellite-satellite comparison based on the OMI QA4ECV HCHO product and on ground-based validation using MAX-DOAS and Pandora network observations. About 15 HCHO measuring stations are involved, providing data corresponding to a wide range of observation conditions at mid and low latitudes, and covering remote, sub-urban, and urban polluted sites. Comparison results show usually negative biases for large HCHO columns, while a positive offset is observed for the lowest columns. For the MAX-DOAS stations providing vertical profile retrievals, the impact of a priori profiles on the comparison is assessed. The dataset allows to discuss validation results as a function of emission source. Seasonal and diurnal variations are compared. Long term variation are also monitored using the OMI and MAX-DOAS QA4ECV dataset.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document