scholarly journals Supplementary material to "A low activity ion source for measurement of atmospheric gases by CIMS"

Author(s):  
Young Ro Lee ◽  
Yi Ji ◽  
David J. Tanner ◽  
L. Gregory Huey
2019 ◽  
Author(s):  
Young Ro Lee ◽  
Yi Ji ◽  
David J. Tanner ◽  
L. Gregory Huey

Abstract. Most I--CIMS (iodide-chemical ionization mass spectrometers) for measurement of atmospheric trace gases utilize a radioactive ion source with an initial activity of 10 or 20 mCi of 210Po. In this work, we characterize a 210Po ion source with an initial activity of 1.5 mCi that can be easily constructed from commercially available components. The low level of radioactive activity of this source significantly reduces complications with storage and shipping relative to higher activity sources. We compare the sensitivity of the low activity source (LAS) to a standard 20 mCi source, as a function of carrier gas flow and flow tube pressure, for peroxyacetyl nitrate (PAN), formic acid (HCO2H) molecular chlorine (Cl2), and nitryl chloride (ClNO2) using an I--CIMS. The LAS provides 2 to 5 times less sensitivity than that of the standard source even though the ratio of activity is approximately 13. However, detection limits of less than 2 pptv for the tested compounds are achieved for integration times of the order of a minute. The sensitivity of the LAS is less dependent on the magnitude of the carrier gas than a standard source. In addition, the LAS provides maximum sensitivity at relatively low carrier gas flows. Finally, we demonstrate that the LAS can be used to measure PAN in the remote atmosphere from an aircraft by showing data obtained on the NASA DC-8 during the Atmospheric Tomography (ATom) mission. In summary, the LAS may be an excellent substitute for a standard ion source in some field applications.


2020 ◽  
Vol 13 (5) ◽  
pp. 2473-2480 ◽  
Author(s):  
Young Ro Lee ◽  
Yi Ji ◽  
David J. Tanner ◽  
L. Gregory Huey

Abstract. Most I−-CIMSs (iodide chemical ionization mass spectrometers) for measurement of atmospheric trace gases utilize a radioactive ion source with an initial activity of 10 or 20 mCi of 210Po. In this work, we characterize a 210Po ion source with an initial activity of 1.5 mCi that can be easily constructed from commercially available components. The low level of radioactive activity of this source significantly reduces regulatory burden with storage and shipping relative to higher-activity sources. We compare the sensitivity of the low-activity source (LAS) to a standard 20 mCi source, as a function of carrier gas flow and flow tube pressure, for peroxyacetyl nitrate (PAN), formic acid (HCO2H), molecular chlorine (Cl2) and nitryl chloride (ClNO2), using an I−-CIMS. The LAS provides 2 to 5 times less sensitivity than that of the standard source even though the ratio of activity is approximately 13. However, detection limits of less than 2 pptv for the tested compounds are achieved for integration times on the order of a minute. The sensitivity of the LAS is less dependent on the magnitude of the carrier gas than a standard source. In addition, the LAS provides maximum sensitivity at relatively low carrier gas flows. Finally, we demonstrate that the LAS can be used to measure PAN in the remote atmosphere from an aircraft by showing data obtained on the NASA DC-8 during the Atmospheric Tomography (ATom) mission. In summary, the LAS may be an excellent substitute for a standard ion source in short-term field deployments.


Author(s):  
Dudley M. Sherman ◽  
Thos. E. Hutchinson

The in situ electron microscope technique has been shown to be a powerful method for investigating the nucleation and growth of thin films formed by vacuum vapor deposition. The nucleation and early stages of growth of metal deposits formed by ion beam sputter-deposition are now being studied by the in situ technique.A duoplasmatron ion source and lens assembly has been attached to one side of the universal chamber of an RCA EMU-4 microscope and a sputtering target inserted into the chamber from the opposite side. The material to be deposited, in disc form, is bonded to the end of an electrically isolated copper rod that has provisions for target water cooling. The ion beam is normal to the microscope electron beam and the target is placed adjacent to the electron beam above the specimen hot stage, as shown in Figure 1.


Author(s):  
R. Levi-Setti ◽  
J. M. Chabala ◽  
Y. L. Wang

We have shown the feasibility of 20 nm lateral resolution in both topographic and elemental imaging using probes of this size from a liquid metal ion source (LMIS) scanning ion microprobe (SIM). This performance, which approaches the intrinsic resolution limits of secondary ion mass spectrometry (SIMS), was attained by limiting the size of the beam defining aperture (5μm) to subtend a semiangle at the source of 0.16 mr. The ensuing probe current, in our chromatic-aberration limited optical system, was 1.6 pA with Ga+ or In+ sources. Although unique applications of such low current probes have been demonstrated,) the stringent alignment requirements which they imposed made their routine use impractical. For instance, the occasional tendency of the LMIS to shift its emission pattern caused severe misalignment problems.


1989 ◽  
Vol 50 (C8) ◽  
pp. C8-175-C8-177 ◽  
Author(s):  
N. M. MISKOVSKY ◽  
J. HE ◽  
P. H. CUTLER ◽  
M. CHUNG
Keyword(s):  

1989 ◽  
Vol 50 (C1) ◽  
pp. C1-807-C1-811 ◽  
Author(s):  
P. McNEELY ◽  
G. ROY ◽  
J. SOUKUP ◽  
J. M. D'AURIA ◽  
L. BUCHMANN ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document