scholarly journals Review of 'Nano-hygroscopicity tandem differential mobility analyzer (nano-HTDMA) for investigating hygroscopic properties of sub-10 nm aerosol nanoparticles'

2020 ◽  
2020 ◽  
Author(s):  
Ting Lei ◽  
Nan Ma ◽  
Juan Hong ◽  
Thomas Tuch ◽  
Xin Wang ◽  
...  

Abstract. Interactions between water and nanoparticles are relevant for atmospheric multiphase processes, physical chemistry, and materials science. Current knowledge of the hygroscopic and related physico-chemical properties of nanoparticles, however, is restricted by limitations of the available measurement techniques. Here, we present the design and performance of a nano-hygroscopicity tandem differential mobility analyzer (nano-HTDMA) apparatus that enables high accuracy and precision in hygroscopic growth measurements of aerosol nanoparticles with diameters less than 10 nm. Detailed methods of calibration and validation are provided. Beside maintaining accurate and stable sheath/aerosol flow rates (± 1 %), high accuracy of DMA voltage (± 0.1 %) in the range of ~0–50 V is crucial to achieve accurate sizing and small sizing offsets between the two DMAs (


2020 ◽  
Vol 13 (10) ◽  
pp. 5551-5567
Author(s):  
Ting Lei ◽  
Nan Ma ◽  
Juan Hong ◽  
Thomas Tuch ◽  
Xin Wang ◽  
...  

Abstract. Interactions between water and nanoparticles are relevant for atmospheric multiphase processes, physical chemistry, and materials science. Current knowledge of the hygroscopic and related physicochemical properties of nanoparticles, however, is restricted by the limitations of the available measurement techniques. Here, we present the design and performance of a nano-hygroscopicity tandem differential mobility analyzer (nano-HTDMA) apparatus that enables high accuracy and precision in hygroscopic growth measurements of aerosol nanoparticles with diameters less than 10 nm. Detailed methods of calibration and validation are provided. Besides maintaining accurate and stable sheath and aerosol flow rates (±1 %), high accuracy of the differential mobility analyzer (DMA) voltage (±0.1 %) in the range of ∼0–50 V is crucial for achieving accurate sizing and small sizing offsets between the two DMAs (<1.4 %). To maintain a stable relative humidity (RH), the humidification system and the second DMA are placed in a well-insulated and air conditioner housing (±0.1 K). We also tested and discussed different ways of preventing predeliquescence in the second DMA. Our measurement results for ammonium sulfate nanoparticles are in good agreement with Biskos et al. (2006b), with no significant size effect on the deliquescence and efflorescence relative humidity (DRH and ERH, respectively) at diameters down to 6 nm. For sodium sulfate nanoparticles, however, we find a pronounced size dependence of DRH and ERH between 20 and 6 nm nanoparticles.


2018 ◽  
Vol 18 (23) ◽  
pp. 17029-17045 ◽  
Author(s):  
Max B. Trueblood ◽  
Prem Lobo ◽  
Donald E. Hagen ◽  
Steven C. Achterberg ◽  
Wenyan Liu ◽  
...  

Abstract. In the last several decades, significant efforts have been directed toward better understanding the gaseous and particulate matter (PM) emissions from aircraft gas turbine engines. However, limited information is available on the hygroscopic properties of aircraft engine PM emissions which play an important role in the water absorption, airborne lifetime, obscuring effect, and detrimental health effects of these particles. This paper reports the description and detailed lab-based performance evaluation of a robust hygroscopicity tandem differential mobility analyzer (HTDMA) in terms of hygroscopic properties such as growth factor (GF) and the hygroscopicity parameter (κ). The HTDMA system was subsequently deployed during the Alternative Aviation Fuel EXperiment (AAFEX) II field campaign to measure the hygroscopic properties of aircraft engine PM emissions in the exhaust plumes from a CFM56-2C1 engine burning several types of fuels. The fuels used were conventional JP-8, tallow-based hydroprocessed esters and fatty acids (HEFA), Fischer–Tropsch, a blend of HEFA and JP-8, and Fischer–Tropsch doped with tetrahydrothiophene (an organosulfur compound). It was observed that GF and κ increased with fuel sulfur content and engine thrust condition, and decreased with increasing dry particle diameter. The highest GF and κ values were found in the smallest particles, typically those with diameters of 10 nm.


2017 ◽  
Author(s):  
Jing Chen ◽  
Sri Hapsari Budisulistiorini ◽  
Masayuki Itoh ◽  
Wen-Chien Lee ◽  
Takuma Miyakawa ◽  
...  

Abstract. The relationship between hygroscopic properties and chemical characteristics of Indonesian biomass burning (BB) particles, which are dominantly generated from peatland fires, was investigated using the humidified tandem differential mobility analyzer. In addition to peat, acacia (a popular species at plantation) and fern (a pioneering species after disturbance by fire) were used for experiments. Fresh Indonesian peat burning particles are almost non-hygroscopic (mean hygroscopicity parameter, κ 


2013 ◽  
Vol 30 (6) ◽  
pp. 1136-1148 ◽  
Author(s):  
Haobo Tan ◽  
Hanbing Xu ◽  
Qilin Wan ◽  
Fei Li ◽  
Xuejiao Deng ◽  
...  

Abstract The hygroscopic properties of aerosols have a significant impact on aerosol particle number size distributions (PNSD), formation of cloud condensation nuclei, climate forcing, and atmospheric visibility, as well as human health. To allow for the observation of the hygroscopic growth of aerosols with long-term accuracy, an unattended multifunctional hygroscopicity-tandem differential mobility analyzer (H-TDMA) system was designed and built by the Institute of Tropical and Marine Meteorology (ITMM), China Meteorological Administration (CMA), in Guangzhou, China. The system is capable of measuring dry and wet PNSD, hygroscopic growth factor by particle size, and mixing states. This article describes in detail the working principles, components, and calibration methods of the system. Standard polystyrene latex (PSL) spheres with five different diameters were chosen to test the system’s precision and accuracy of particle size measurement. Ammonium sulfate was used to test the hygroscopic response of the system for accurate growth factor measurement. The test results show that the deviation of the growth factor measured by the system is within a scope of −0.01 to −0.03 compared to Köhler theoretical curves. Results of temperature and humidity control performance tests indicate that the system is robust. An internal temperature gradient of less than 0.2 K for a second differential mobility analyzer (DMA2) makes it possible to reach a set-point relative humidity (RH) value of 90% and with a standard deviation of ±0.44%, sufficient for unattended field observation.


2021 ◽  
Author(s):  
Shuang Han ◽  
Juan Hong ◽  
Qingwei Luo ◽  
Hanbing Xu ◽  
Haobo Tan ◽  
...  

Abstract. Hygroscopic properties of 23 organics including carboxylic acids, amino acids, sugars and alcohols were characterized using a Hygroscopicity Tandem Differential Mobility Analyzer (HTDMA). We show that hygroscopicity of organics varies widely with different functional groups and organics with additional functional groups are more hygroscopic. However, some compounds sharing the same molecular formula or functionality show quite different hygroscopicity, demonstrating that other physico-chemical properties may contribute to their hygroscopicity as well. If the organics are fully dissolved in water (solubility > 7× 10−1 g/ml), we found that their hygroscopicity is mainly controlled by their molecular weight. For the organics that are not fully dissolved in water (slightly soluble: 5 × 10−4 g/ml < solubility < 7 × 10−1 g/ml), we observed that some of them show no obvious water uptake, which probably due to that they may not deliquesce under our studied conditions up to 90 % RH. The other type of slightly soluble organics is moderate hygroscopic and the larger their solubility the higher their hygroscopicity. Moreover, the hygroscopicity of organics generally increased with O : C ratios, although this relationship is not linear. Hygroscopicity of organic compounds were also predicted by two thermodynamic models using the Extended Aerosol Inorganics Model (E-AIM) and UManSysProp. Both models do not consider phase transition and intermolecular interactions in the simulations and show poor representation of the hygroscopicity for most of the organics.


2010 ◽  
Vol 10 (11) ◽  
pp. 5165-5178 ◽  
Author(s):  
C. M. Carrico ◽  
M. D. Petters ◽  
S. M. Kreidenweis ◽  
A. P. Sullivan ◽  
G. R. McMeeking ◽  
...  

Abstract. As part of the Fire Lab at Missoula Experiments (FLAME) in 2006–2007, we examined hygroscopic properties of particles emitted from open combustion of 33 select biomass fuels. Measurements of humidification growth factors for subsaturated water relative humidity (RH) conditions were made with a hygroscopic tandem differential mobility analyzer (HTDMA) for dry particle sizes of 50, 100 and 250 nm. Results were then fit to a single-parameter model to obtain the hygroscopicity parameter, κ. Particles in freshly emitted biomass smoke exhibited a wide range of hygroscopicity (individual modes with 0


Sign in / Sign up

Export Citation Format

Share Document