scholarly journals Ability of the MAX-DOAS method to derive profile information for NO<sub>2</sub>: can the boundary layer and free troposphere be separated?

2011 ◽  
Vol 4 (12) ◽  
pp. 2659-2684 ◽  
Author(s):  
T. Vlemmix ◽  
A. J. M. Piters ◽  
A. J. C. Berkhout ◽  
L. F. L. Gast ◽  
P. Wang ◽  
...  

Abstract. Multiple Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) instruments can measure from the ground the absorption by nitrogen dioxide (NO2) of scattered sunlight seen in multiple viewing directions. This paper studies the potential of this technique to derive the vertical distribution of NO2 in the troposphere. Such profile information is essential for detailed comparisons of MAX-DOAS retrievals with other measurement techniques for NO2, e.g. with a lidar or from space. The retrieval algorithm used is based on a pre-calculated look-up table and assumes homogeneous mixing of aerosols and NO2 in layers extending from the surface to a variable height. Two retrieval models are compared: one including and one excluding an elevated NO2 layer at a fixed altitude in the free troposphere. An ensemble technique is applied to derive retrieval uncertainties. Sensitivity studies demonstrate that NO2 in the free troposphere can only be retrieved accurately if: (i) the retrieved boundary layer profiles for aerosols and NO2 correspond to the real ones, (ii) if the right a-priori choice is made for the (average) height of free tropospheric NO2, and (iii) if all other error sources are very low. It is shown that retrieval models that are capable of accurate NO2 retrievals in the free troposphere, i.e. models not constrained too much by a-priori assumptions, have as a major disadvantage that they will frequently find free tropospheric NO2, also when it is not present in reality. This is a consequence of the fact that NO2 in the free troposphere is poorly constrained by the MAX-DOAS observations, especially for high aerosol optical thickness values in the boundary layer. Retrieval of free tropospheric NO2 is therefore sensitive to a large number of error sources. For this reason it is advised to firmly constrain free tropospheric NO2 in MAX-DOAS retrieval models used for applications such as satellite validation. This effectively makes free tropospheric NO2 a source of error for MAX-DOAS retrieval of NO2 profiles in the boundary layer. A comparison was performed with independent data, based on MAX-DOAS observations done at the CINDI campaign, held in the Netherlands in 2009. Comparison with lidar partial tropospheric NO2 columns showed a correlation of 0.78, and an average difference of 0.1× 1015 molec cm−2. The diurnal evolution of the NO2 volume mixing ratio measured by in-situ monitors at the surface and averaged over five days with cloud-free mornings, compares well to the MAX-DOAS retrieval: a correlation was found of 0.94, and an average difference of 0.04 ppb.

2011 ◽  
Vol 4 (3) ◽  
pp. 4013-4072 ◽  
Author(s):  
T. Vlemmix ◽  
A. J. M. Piters ◽  
A. J. C. Berkhout ◽  
L. F. L. Gast ◽  
P. Wang ◽  
...  

Abstract. Muliple Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) instruments can measure from the ground the absorption by nitrogen dioxide (NO2) of scattered sunlight seen in multiple viewing directions. This paper studies the potential of this technique to derive the vertical distribution of NO2 in the troposphere. Such profile information is essential in validation studies in which MAX-DOAS retrievals play a role. The retrieval algorithm used is based on a pre-calculated look-up table and assumes homogeneous mixing of aerosols and NO2 in layers extending from the surface to a variable height. Two retrieval models are compared: one including and one excluding an elevated NO2 layer at a fixed altitude in the free troposphere. An ensemble technique is applied to derive retrieved model uncertainties. Sensitivity studies demonstrate that MAX-DOAS based retrievals can make a distinction between an NO2 layer that extends from the surface to a certain height (having a constant mixing ratio, or a mixing ratio that decreases with altitude) and an elevated NO2 layer. The height of the elevated NO2 layer can only be retrieved accurately when the aerosol extinction profile is known and the measurement noise is low. The uncertainty in this elevated NO2 layer height provides the main source of uncertainty in the retrieval of the free tropospheric contribution to the tropospheric NO2 column. A comparison was performed with independent data, based on observations done at the CINDI campaign, held in the Netherlands in 2009. Comparison with lidar partial tropospheric NO2 columns showed a correlation of 0.78, and an average difference of 0.1× 1015 molec cm−2. The diurnal evolution of the NO2 volume mixing ratio measured by in-situ monitors at the surface and averaged over five days with cloud-free mornings, compares quite well to the MAX-DOAS retrieval: a correlation was found of 0.8, and an average difference of 0.2 ppb.


2021 ◽  
Vol 14 (11) ◽  
pp. 7297-7327
Author(s):  
Song Liu ◽  
Pieter Valks ◽  
Gaia Pinardi ◽  
Jian Xu ◽  
Ka Lok Chan ◽  
...  

Abstract. Launched in October 2017, the TROPOspheric Monitoring Instrument (TROPOMI) aboard Sentinel-5 Precursor provides the potential to monitor air quality over point sources across the globe with a spatial resolution as high as 5.5 km × 3.5 km (7 km × 3.5 km before 6 August 2019). The DLR nitrogen dioxide (NO2) retrieval algorithm for the TROPOMI instrument consists of three steps: the spectral fitting of the slant column, the separation of stratospheric and tropospheric contributions, and the conversion of the slant column to a vertical column using an air mass factor (AMF) calculation. In this work, an improved DLR tropospheric NO2 retrieval algorithm from TROPOMI measurements over Europe is presented. The stratospheric estimation is implemented using the STRatospheric Estimation Algorithm from Mainz (STREAM), which was developed as a verification algorithm for TROPOMI and does not require chemistry transport model data as input. A directionally dependent STREAM (DSTREAM) is developed to correct for the dependency of the stratospheric NO2 on the viewing geometry by up to 2×1014 molec./cm2. Applied to synthetic TROPOMI data, the uncertainty in the stratospheric column is 3.5×1014 molec./cm2 in the case of significant tropospheric sources. Applied to actual measurements, the smooth variation of stratospheric NO2 at low latitudes is conserved, and stronger stratospheric variation at higher latitudes is captured. For AMF calculation, the climatological surface albedo data are replaced by geometry-dependent effective Lambertian equivalent reflectivity (GE_LER) obtained directly from TROPOMI measurements with a high spatial resolution. Mesoscale-resolution a priori NO2 profiles are obtained from the regional POLYPHEMUS/DLR chemistry transport model with the TNO-MACC emission inventory. Based on the latest TROPOMI operational cloud parameters, a more realistic cloud treatment is provided by a Clouds-As-Layers (CAL) model, which treats the clouds as uniform layers of water droplets, instead of the Clouds-As-Reflecting-Boundaries (CRB) model, in which clouds are simplified as Lambertian reflectors. For the error analysis, the tropospheric AMF uncertainty, which is the largest source of NO2 uncertainty for polluted scenarios, ranges between 20 % and 50 %, leading to a total uncertainty in the tropospheric NO2 column in the 30 %–60 % range. From a validation performed with ground-based multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements, the new DLR tropospheric NO2 data show good correlations for nine European urban/suburban stations, with an average correlation coefficient of 0.78. The implementation of the algorithm improvements leads to a decrease of the relative difference from −55.3 % to −34.7 % on average in comparison with the DLR reference retrieval. When the satellite averaging kernels are used to remove the contribution of a priori profile shape, the relative difference decreases further to ∼ −20 %.


2009 ◽  
Vol 9 (11) ◽  
pp. 3641-3662 ◽  
Author(s):  
D. Chen ◽  
B. Zhou ◽  
S. Beirle ◽  
L. M. Chen ◽  
T. Wagner

Abstract. Zenith-sky scattered sunlight observations using differential optical absorption spectroscopy (DOAS) technique were carried out in Shanghai, China (31.3° N, 121.5° E) since December 2006. At this polluted urban site, the measurements provided NO2 total columns in the daytime. Here, we present a new method to extract time series of tropospheric vertical column densities (VCDs) of NO2 from these observations. The derived tropospheric NO2 VCDs are important quantities for the estimation of emissions and for the validation of satellite observations. Our method makes use of assumptions on the relative NO2 height profiles and the diurnal variation of stratospheric NO2 VCDs. The main error sources arise from the uncertainties in the estimated stratospheric slant column densities (SCDs) and the determination of tropospheric NO2 air mass factor (AMF). For a polluted site like Shanghai, the accuracy of our method is conservatively estimated to be <25% for solar zenith angle (SZA) lower than 70°. From simultaneously performed long-path DOAS measurements, the NO2 surface concentrations at the same site were observed and the corresponding tropospheric NO2 VCDs were estimated using the assumed seasonal NO2 profiles in the planetary boundary layer (PBL). By making a comparison between the tropospheric NO2 VCDs from zenith-sky and long-path DOAS measurements, it is found that the former provides more realistic information about total tropospheric pollution than the latter, so it's more suitable for satellite data validation. A comparison between the tropospheric NO2 VCDs from ground-based zenith-sky measurements and SCIAMACHY was also made. Satellite validation for a strongly polluted area is highly needed, but exhibits also a great challenge. Our comparison shows good agreement, considering in particular the different spatial resolutions between the two measurements. Remaining systematic deviations are most probably related to the uncertainties of satellite data caused by the assumptions on aerosol properties as well as the layer heights of aerosols and NO2.


2017 ◽  
Vol 10 (1) ◽  
pp. 119-153 ◽  
Author(s):  
Nicolas Theys ◽  
Isabelle De Smedt ◽  
Huan Yu ◽  
Thomas Danckaert ◽  
Jeroen van Gent ◽  
...  

Abstract. The TROPOspheric Monitoring Instrument (TROPOMI) onboard the Copernicus Sentinel-5 Precursor (S-5P) platform will measure ultraviolet earthshine radiances at high spectral and improved spatial resolution (pixel size of 7 km  ×  3.5 km at nadir) compared to its predecessors OMI and GOME-2. This paper presents the sulfur dioxide (SO2) vertical column retrieval algorithm implemented in the S-5P operational processor UPAS (Universal Processor for UV/VIS Atmospheric Spectrometers) and comprehensively describes its various retrieval steps. The spectral fitting is performed using the differential optical absorption spectroscopy (DOAS) method including multiple fitting windows to cope with the large range of atmospheric SO2 columns encountered. It is followed by a slant column background correction scheme to reduce possible biases or across-track-dependent artifacts in the data. The SO2 vertical columns are obtained by applying air mass factors (AMFs) calculated for a set of representative a priori profiles and accounting for various parameters influencing the retrieval sensitivity to SO2. Finally, the algorithm includes an error analysis module which is fully described here. We also discuss verification results (as part of the algorithm development) and future validation needs of the TROPOMI SO2 algorithm.


2014 ◽  
Vol 14 (19) ◽  
pp. 10565-10588 ◽  
Author(s):  
S. Choi ◽  
J. Joiner ◽  
Y. Choi ◽  
B. N. Duncan ◽  
A. Vasilkov ◽  
...  

Abstract. We derive free-tropospheric NO2 volume mixing ratios (VMRs) by applying a cloud-slicing technique to data from the Ozone Monitoring Instrument (OMI) on the Aura satellite. In the cloud-slicing approach, the slope of the above-cloud NO2 column versus the cloud scene pressure is proportional to the NO2 VMR. In this work, we use a sample of nearby OMI pixel data from a single orbit for the linear fit. The OMI data include cloud scene pressures from the rotational-Raman algorithm and above-cloud NO2 vertical column density (VCD) (defined as the NO2 column from the cloud scene pressure to the top of the atmosphere) from a differential optical absorption spectroscopy (DOAS) algorithm. We compare OMI-derived NO2 VMRs with in situ aircraft profiles measured during the NASA Intercontinental Chemical Transport Experiment Phase B (INTEX-B) campaign in 2006. The agreement is generally within the estimated uncertainties when appropriate data screening is applied. We then derive a global seasonal climatology of free-tropospheric NO2 VMR in cloudy conditions. Enhanced NO2 in the free troposphere commonly appears near polluted urban locations where NO2 produced in the boundary layer may be transported vertically out of the boundary layer and then horizontally away from the source. Signatures of lightning NO2 are also shown throughout low and middle latitude regions in summer months. A profile analysis of our cloud-slicing data indicates signatures of lightning-generated NO2 in the upper troposphere. Comparison of the climatology with simulations from the global modeling initiative (GMI) for cloudy conditions (cloud optical depth > 10) shows similarities in the spatial patterns of continental pollution outflow. However, there are also some differences in the seasonal variation of free-tropospheric NO2 VMRs near highly populated regions and in areas affected by lightning-generated NOx.


2014 ◽  
Vol 7 (6) ◽  
pp. 6021-6063
Author(s):  
A. Geddes ◽  
H. Bösch

Abstract. Aerosols are an important factor of the Earth climatic system and they play a key role for air quality and public health. Observations of the oxygen A-Band at 760 nm can provide information on the vertical distribution of aerosols from passive satellite sensors, that can be of great interest for operational monitoring applications with high coverage if the aerosol information is obtained with sufficient precision, accuracy and vertical resolution. To address this issue, retrieval simulations of the aerosol vertical profile retrieval from O2 A Band observations by GOSAT, the upcoming OCO-2 and Sentinel 5-P mission and the proposed CarbonSat mission have been carried out. Precise retrievals of AOD within the boundary layer were found to favour low resolution, high SNR instruments such as Sentinel-5 P, whereas higher resolution instruments such as OCO-2 showed greater performance at higher altitudes and in information content above the boundary layer. Accurate retrievals of the AOD in the 0–2 km range appears difficult from all studied instruments and the retrieval errors typically exceed a value of 0.05. Constraining the surface albedo is a promising and effective way of improving the retrieval of aerosol, but the required level of a priori knowledge is very high. Due to the limited information content of the aerosol profile retrieval, the use of a parameterised aerosol distribution has been assessed and we show that the AOD and height of an aerosol layer can be retrieved well if the aerosol layer is uplifted to the free troposphere but errors are often large for aerosol layers in the boundary layer. Additional errors will be introduced by incorrect assumptions on surface pressure and aerosol type which can both bias retrieved AOD and height by up to 40%. We conclude the aerosol profile retrievals from O2 A Band using existing or upcoming satellite sensors will only provide limited information on aerosols in the boundary layer but such observations can be of great value for observing and mapping aerosol plumes in the free troposphere.


2020 ◽  
Author(s):  
Benjamin Schreiner ◽  
Klaus Pfeilsticker ◽  
Flora Kluge ◽  
Meike Rotermund ◽  
Andreas Zahn ◽  
...  

&lt;p&gt;Middle and long-term &amp;#160;photo-chemical effects of local and regional pollution are not well quantified and are an area of active study. NO&lt;sub&gt;x&lt;/sub&gt; (here defined as NO, NO&lt;sub&gt;2&lt;/sub&gt;, and HONO) is a regional pollutant, which influences atmospheric oxidation capacity and ozone formation. Airborne measurements of atmospheric trace gases from the HALO (High Altitude Long Range) aircraft, particularly of NO, NO&lt;sub&gt;2&lt;/sub&gt;, and HONO were performed as part of the EMeRGe (Effect of Megacities on the Transport and Transformation of Pollutants on the Regional to Global Scales) campaign over continental Europe and southeast Asia in July 2017 and April 2018, respectively. NO (and NO&lt;sub&gt;Y&lt;/sub&gt;), O&lt;sub&gt;3&lt;/sub&gt;, and the photolysis frequencies of NO&lt;sub&gt;2&lt;/sub&gt; and HONO were measured in-situ. NO&lt;sub&gt;2&lt;/sub&gt; and HONO were inferred from Limb measurements of the mini-DOAS (Differential Optical Absorption Spectroscopy) instrument, using the novel scaling method (H&amp;#252;neke et al., 2017). These measurements were compared with simulations of the MECO/EMAC models. In relatively polluted air-masses in the boundary layer and free troposphere, HONO measured in excess of model predictions (and previous measurements) suggests an in-situ formation and a significant source of OH as well as a pathway for re-noxification. Aerosol composition simultaneously measured &amp;#160;by the C-Tof-AMS instrument may reveal potential reaction mechanisms to explain the discrepancy.&amp;#160;&lt;/p&gt;


2018 ◽  
Vol 18 (16) ◽  
pp. 11885-11903 ◽  
Author(s):  
Nikolaos Siomos ◽  
Dimitris S. Balis ◽  
Kalliopi A. Voudouri ◽  
Eleni Giannakaki ◽  
Maria Filioglou ◽  
...  

Abstract. In this study we investigate the climatological behavior of the aerosol optical properties over Thessaloniki during the years 2003–2017. For this purpose, measurements of two independent instruments, a lidar and a sunphotometer, were used. These two instruments represent two individual networks, the European Lidar Aerosol Network (EARLINET) and the Aerosol Robotic Network (AERONET). They include different measurement schedules. Fourteen years of lidar and sunphotometer measurements were analyzed, independently of each other, in order to obtain the annual cycles and trends of various optical and geometrical aerosol properties in the boundary layer, in the free troposphere, and for the whole atmospheric column. The analysis resulted in consistent statistically significant and decreasing trends of aerosol optical depth (AOD) at 355 nm of −23.2 and −22.3 % per decade in the study period over Thessaloniki for the EARLINET and the AERONET datasets, respectively. Therefore, the analysis indicates that the EARLINET sampling schedule can be quite effective in producing data that can be applied to long-term climatological studies. It is also shown that the observed decreasing trend is mainly attributed to changes in the aerosol load inside the boundary layer. Seasonal profiles of the most dominant aerosol mixture types observed over Thessaloniki have been generated from the lidar data. The higher values of the vertically resolved extinction coefficient at 355 nm appear in summer, while the lower ones appear in winter. The dust component is more dominant in the free troposphere than in the boundary layer during summer. The biomass burning layers tend to arrive in the free troposphere during spring and summer. This kind of information can be quite useful for applications that require a priori aerosol profiles. For instance, they can be utilized in models that require aerosol climatological data as input, in the development of algorithms for satellite products, and also in passive remote-sensing techniques that require knowledge of the aerosol vertical distribution.


2011 ◽  
Vol 4 (4) ◽  
pp. 683-704 ◽  
Author(s):  
J. Hurley ◽  
A. Dudhia ◽  
R. G. Grainger

Abstract. The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) onboard ENVISAT has the potential to be particularly useful for studying high, thin clouds, which have been difficult to observe in the past. This paper details the development, implementation and testing of an optimal-estimation-type retrieval for three macrophysical cloud parameters (cloud top height, cloud top temperature and cloud extinction coefficient) from infrared spectra measured by MIPAS. A preliminary estimation of a parameterisation of the optical and geometrical filling of the measurement field-of-view by cloud is employed as the first step of the retrieval process to improve the choice of a priori for the macrophysical parameters themselves. Preliminary application to single-scattering simulations indicates that the retrieval error stemming from uncertainties introduced by noise and by a priori variances in the retrieval process itself is small – although it should be noted that these retrieval errors do not include the significant errors stemming from the assumption of homogeneity and the non-scattering nature of the forward model. Such errors are preliminarily and qualitatively assessed here, and are likely to be the dominant error sources. The retrieval converges for 99% of input cases, although sometimes fails to converge for vetically-thin (<1 km) clouds. The retrieval algorithm is applied to MIPAS data; the results of which are qualitatively compared with CALIPSO cloud top heights and PARASOL cloud opacities. From comparison with CALIPSO cloud products, it must be noted that the cloud detection method used in this algorithm appears to potentially misdetect stratospheric aerosol layers as cloud. This algorithm has been adopted by the European Space Agency's "MIPclouds" project.


2010 ◽  
Vol 3 (5) ◽  
pp. 1287-1305 ◽  
Author(s):  
T. Vlemmix ◽  
A. J. M. Piters ◽  
P. Stammes ◽  
P. Wang ◽  
P. F. Levelt

Abstract. Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) is a technique to measure trace gas amounts in the lower troposphere from ground-based scattered sunlight observations. MAX-DOAS observations are especially suitable for validation of tropospheric trace gas observations from satellite, since they have a representative range of several kilometers, both in the horizontal and in the vertical dimension. A two-step retrieval scheme is presented here, to derive aerosol corrected tropospheric NO2 columns from MAX-DOAS observations. In a first step, boundary layer aerosols, characterized in terms of aerosol optical thickness (AOT), are estimated from relative intensity observations, which are defined as the ratio of the sky radiance at elevation α and the sky radiance in the zenith. Relative intensity measurements have the advantage of a strong dependence on boundary layer AOT and almost no dependence on boundary layer height. In a second step, tropospheric NO2 columns are derived from differential slant columns, based on AOT-dependent air mass factors. This two-step retrieval scheme was applied to cloud free periods in a twelve month data set of observations in De Bilt, The Netherlands. In a comparison with AERONET (Cabauw site) a mean difference in AOT (AERONET minus MAX-DOAS) of −0.01±0.08 was found, and a correlation of 0.85. Tropospheric-NO2 columns were compared with OMI-satellite tropospheric NO2. For ground-based observations restricted to uncertainties below 10%, no significant difference was found, and a correlation of 0.88.


Sign in / Sign up

Export Citation Format

Share Document