scholarly journals On the optimal method for evaluating cloud products from passive satellite imagery using CALIPSO-CALIOP data: example investigating the CM SAF CLARA-A1 dataset

2013 ◽  
Vol 6 (5) ◽  
pp. 1271-1286 ◽  
Author(s):  
K.-G. Karlsson ◽  
E. Johansson

Abstract. A method for detailed evaluation of a new satellite-derived global 28 yr cloud and radiation climatology (Climate Monitoring SAF Clouds, Albedo and Radiation from AVHRR data, named CLARA-A1) from polar-orbiting NOAA and Metop satellites is presented. The method combines 1 km and 5 km resolution cloud datasets from the CALIPSO-CALIOP (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation – Cloud-Aerosol Lidar with Orthogonal Polarization) cloud lidar for estimating cloud detection limitations and the accuracy of cloud top height estimations. Cloud detection is shown to work efficiently for clouds with optical thicknesses above 0.30 except for at twilight conditions when this value increases to 0.45. Some misclassifications of cloud-free surfaces during daytime were revealed for semi-arid land areas in the sub-tropical and tropical regions leading to up to 20% overestimated cloud amounts. In addition, a substantial fraction (at least 20–30%) of all clouds remains undetected in the polar regions during the polar winter season due to the lack of or an inverted temperature contrast between Earth surfaces and clouds. Subsequent cloud top height evaluation took into account the derived information about the cloud detection limits. It was shown that this has fundamental importance for the achieved results. An overall bias of −274 m was achieved compared to a bias of −2762 m when no measures were taken to compensate for cloud detection limitations. Despite this improvement it was concluded that high-level clouds still suffer from substantial height underestimations, while the opposite is true for low-level (boundary layer) clouds. The validation method and the specifically collected satellite dataset with optimal matching in time and space are suggested for a wider use in the future for evaluation of other cloud retrieval methods based on passive satellite imagery.

2013 ◽  
Vol 6 (1) ◽  
pp. 1093-1141
Author(s):  
K.-G. Karlsson ◽  
E. Johansson

Abstract. A method for detailed evaluation of a new satellite-derived global 28-yr cloud and radiation climatology (Climate Monitoring SAF Cloud, Albedo and Radiation dataset from AVHRR data, named CLARA-A1) from polar orbiting NOAA and Metop satellites is presented. The method combines 1 km and 5 km resolution cloud datasets from the CALIPSO-CALIOP cloud lidar for estimating cloud detection limitations and the accuracy of cloud top height estimations. Cloud detection is shown to work efficiently for clouds with optical thicknesses above 0.30 except for at twilight conditions when this value increases to 0.45. Some misclassifications generating erroneous clouds over land surfaces in semi-arid regions in the sub-tropical and tropical regions are revealed. In addition, a substantial fraction of all clouds remains undetected in the Polar regions during the polar winter season due to the lack of or an inverted temperature contrast between Earth surfaces and clouds. Subsequent cloud top height evaluation took into account the derived information about the cloud detection limits. It was shown that this has fundamental importance for the achieved results. An overall bias of −274 m was achieved compared to a bias of −2762 m if no measures were taken to compensate for cloud detection limitations. Despite this improvement it was concluded that high-level clouds still suffer from substantial height underestimations while the opposite is true for low-level (boundary layer) clouds. The validation method and the specifically collected satellite dataset with optimal matching in time and space are suggested for a wider use in the future for evaluation of other cloud retrieval methods based on passive satellite imagery.


2020 ◽  
Author(s):  
Andrzej Z. Kotarba

Abstract. The Moderate Resolution Imaging Spectroradiometer (MODIS) cloud detection procedure classifies instantaneous fields of view (IFOV) as either confident cloudy, probably cloudy, probably clear, or confident clear. The cloud amount calculation requires quantitative cloud fractions to be assigned to these classes. The operational procedure used by NASA assumes that confident clear and probably clear IFOV are cloud-free (cloud fraction 0 %), while the remaining categories are completely filled with clouds (cloud fraction 100 %). This study demonstrates that this best guess approach is unreliable, especially on a regional/ local scale. We use data from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument flown on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission, collocated with MODIS/ Aqua IFOV. Based on 33,793,648 paired observations acquired in January and July 2015, we conclude that actual cloud fractions to be associated with MODIS cloud mask categories are 21.5 %, 27.7 %, 66.6 %, and 94.7 %. Spatial variability is significant, even within a single MODIS algorithm path, and the operational approach introduces uncertainties of up to 30 % of cloud amount, notably in the polar regions at night, and in selected locations over the northern hemisphere. Applications of MODIS data at ~10 degrees resolution (or finer) should first assess the extent of the error. Uncertainties were related to the efficiency of the cloud masking algorithm. Until the algorithm can be significantly modified, our method is a robust way to calibrate (correct) MODIS estimates. It can be also used for MODIS/ Terra data, and other missions where the footprint is collocated with CALIPSO.


2020 ◽  
Vol 13 (9) ◽  
pp. 4995-5012
Author(s):  
Andrzej Z. Kotarba

Abstract. The Moderate Resolution Imaging Spectroradiometer (MODIS) cloud detection procedure classifies instantaneous fields of view (IFOVs) as either “confident clear”, “probably clear”, “probably cloudy”, or “confident cloudy”. The cloud amount calculation requires quantitative cloud fractions to be assigned to these classes. The operational procedure used by the MODIS Science Team assumes that confident clear and probably clear IFOVs are cloud-free (cloud fraction 0 %), while the remaining categories are completely filled with clouds (cloud fraction 100 %). This study demonstrates that this “best-guess” approach is unreliable, especially on a regional/local scale. We use data from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument flown on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission, collocated with Aqua MODIS IFOV. Based on 33 793 648 paired observations acquired in January and July 2015, we conclude that actual cloud fractions to be associated with MODIS cloud mask categories are 21.5 %, 27.7 %, 66.6 %, and 94.7 %. Spatial variability is significant, even within a single MODIS algorithm path, and the operational approach introduces uncertainties of up to 30 % of cloud amount, notably in polar regions at night, and in selected locations over the Northern Hemisphere (e.g. China, the north-west coast of Africa, and eastern parts of the United States). Consequently, applications of MODIS data on a regional/local scale should first assess the extent of the uncertainty. We suggest using CALIPSO-based cloud fractions to improve MODIS cloud amount estimates. This approach can also be used for Terra MODIS data, and other passive cloud imagers, where the footprint is collocated with CALIPSO.


2013 ◽  
Vol 30 (4) ◽  
pp. 725-744 ◽  
Author(s):  
H. Chepfer ◽  
G. Cesana ◽  
D. Winker ◽  
B. Getzewich ◽  
M. Vaughan ◽  
...  

Abstract Two different cloud climatologies have been derived from the same NASA–Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP)-measured attenuated backscattered profile (level 1, version 3 dataset). The first climatology, named Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations–Science Team (CALIPSO-ST), is based on the standard CALIOP cloud mask (level 2 product, version 3), with the aim to document clouds with the highest possible spatiotemporal resolution, taking full advantage of the CALIOP capabilities and sensitivity for a wide range of cloud scientific studies. The second climatology, named GCM-Oriented CALIPSO Cloud Product (CALIPSO-GOCCP), is aimed at a single goal: evaluating GCM prediction of cloudiness. For this specific purpose, it has been designed to be fully consistent with the CALIPSO simulator included in the Cloud Feedback Model Intercomparison Project (CFMIP) Observation Simulator Package (COSP) used within version 2 of the CFMIP (CFMIP-2) experiment and phase 5 of the Coupled Model Intercomparison Project (CMIP5). The differences between the two datasets in the global cloud cover maps—total, low level (P > 680 hPa), midlevel (680 < P < 440 hPa), and high level (P < 440 hPa)—are frequently larger than 10% and vary with region. The two climatologies show significant differences in the zonal cloud fraction profile (which differ by a factor of almost 2 in some regions), which are due to the differences in the horizontal and vertical averaging of the measured attenuated backscattered profile CALIOP profile before the cloud detection and to the threshold used to detect clouds (this threshold depends on the resolution and the signal-to-noise ratio).


2021 ◽  
Author(s):  
Artem Feofilov ◽  
Hélène Chepfer ◽  
Vincent Noel ◽  
Rodrigo Guzman ◽  
Cyprien Gindre ◽  
...  

Abstract. The spaceborne active sounders have been contributing invaluable vertically resolved information of atmospheric optical properties since the launch of CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) in 2006. To ensure the continuity of climate studies and monitoring the global changes, one has to understand the differences between lidars operating at different wavelengths, flying at different orbits, and utilizing different observation geometries, receiving paths, and detectors. In this article, we show the results of an intercomparison study of ALADIN (Atmospheric Laser Doppler INstrument) and CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) lidars using their scattering ratio (SR) products for the period of 28/06/2019−31/12/2019. We suggest an optimal set of collocation criteria (Δdist < 1º; Δtime < 6 h), which would give a representative set of collocated profiles and we show that for such a pair of instruments the theoretically achievable cloud detection agreement for the data collocated with aforementioned criteria is 0.77 ± 0.17. The analysis of a collocated database consisting of ~78000 pairs of collocated nighttime SR profiles revealed the following: (a) in the cloud-free area, the agreement is good indicating low frequency of false positive cloud detections by both instruments; (b) the cloud detection agreement is better for the lower layers. Above ~7 km, the ALADIN product demonstrates lower sensitivity because of lower backscatter at 355 nm and because of lower signal-to-noise ratio; (c) in 50 % of the analyzed cases when ALADIN reported a low cloud not detected by CALIOP, the middle level cloud hindered the observations and perturbed the ALADIN’s retrieval indicating the need for quality flag refining for such scenarios; (d) large sensitivity to lower clouds leads to skewing the ALADIN’s cloud peaks down by ~0.5 ± 0.4 km, but this effect does not alter the polar stratospheric cloud peak heights; (e) temporal evolution of cloud agreement quality does not reveal any anomaly for the considered period, indicating that hot pixels and laser degradation effects in ALADIN have been mitigated at least down to the uncertainties in the following cloud detection agreement values: 61 ± 16 %, 34 ± 18 % 24 ± 10 %, 26 ± 10 %, and 22 ± 12 % at 0.75 km, 2.25 km, 6.75 km, 8.75 km, and 10.25 km, respectively.


2018 ◽  
Author(s):  
Nawo Eguchi ◽  
Yukio Yoshida

Abstract. A detection method for high-level cloud, such as ice clouds, is developed using the water vapor saturated channels of the solar reflected spectrum observed by the Greenhouse gases Observing SATellite (GOSAT) Thermal And Near-infrared Sensor for carbon Observation Fourier Transform Spectrometer (TANSO–FTS). The clouds detected by this method are relatively optically thin (0.01 or less) and located at high altitude. Approximately 85 % of the results from this method for clouds with cloud-top altitude above 5 km agree with Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) cloud classification. GOSAT has been observing since April 2009 with a 3-day cycle, providing a spectral data record that exceeds 8 years. Cloud information derived from GOSAT TANSO-FTS spectra could be powerful data for understanding the variability in cirrus cloud on temporal scales from synoptic to interannual.


2019 ◽  
Vol 12 (1) ◽  
pp. 389-403
Author(s):  
Nawo Eguchi ◽  
Yukio Yoshida

Abstract. A detection method for high-level clouds, such as ice clouds, is developed using the water vapor saturated channels of the solar reflected spectrum observed by the Greenhouse gases Observing SATellite (GOSAT) Thermal And Near-infrared Sensor for carbon Observation Fourier Transform Spectrometer (TANSO-FTS). The clouds detected by this method are optically relatively thin (0.01 or less) and located at high altitude. Approximately 85 % of the results from this method for clouds with cloud-top altitude above 5 km agree with the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) cloud classification. GOSAT has been operating since April 2009 with a 3-day repeat cycle for a pointwise geolocation pattern, providing a spectral data record that exceeds 9 years. Cloud information derived from GOSAT TANSO-FTS spectra could be powerful data for understanding the variability in cirrus cloud on temporal scales from synoptic to interannual.


2013 ◽  
Vol 26 (10) ◽  
pp. 3285-3306 ◽  
Author(s):  
Mark Aaron Chan ◽  
Josefino C. Comiso

Abstract The Moderate Resolution Imaging Spectroradiometer (MODIS), Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP), and CloudSat Cloud Profiling Radar (CPR) set of sensors, all in the Afternoon Constellation (A-Train), has been regarded as among the most powerful tools for characterizing the cloud cover. While providing good complementary information, the authors also observed that, at least for the Arctic region, the different sensors provide significantly different statistics about cloud cover characteristics. Data in 2007 and 2010 were analyzed, and the annual averages of cloud cover in the Arctic region were found to be 66.8%, 78.4%, and 63.3% as derived from MODIS, CALIOP, and CPR, respectively. A large disagreement between MODIS and CALIOP over sea ice and Greenland is observed, with a cloud percentage difference of 30.9% and 31.5%, respectively. In the entire Arctic, the average disagreement between MODIS and CALIOP increased from 13.1% during daytime to 26.7% during nighttime. Furthermore, the MODIS cloud mask accuracy has a high seasonal dependence, in that MODIS–CALIOP disagreement is the lowest during summertime at 10.7% and worst during winter at 28.0%. During nighttime the magnitude of the bias is higher because cloud detection is limited to the use of infrared bands. The clouds not detected by MODIS are typically low-level (top height &lt;2 km) and high-level clouds (top height &gt;6 km) and, especially, those that are geometrically thin (&lt;2 km). Geometrically thin clouds (&lt;2 km) accounted for about 95.5% of all clouds that CPR misses. As reported in a similar study, very low and thin clouds (&lt;0.3 km) over sea ice that are detected by MODIS are sometimes not observed by CPR and misclassified by CALIOP.


Agriculture ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 371
Author(s):  
Yu Jin ◽  
Jiawei Guo ◽  
Huichun Ye ◽  
Jinling Zhao ◽  
Wenjiang Huang ◽  
...  

The remote sensing extraction of large areas of arecanut (Areca catechu L.) planting plays an important role in investigating the distribution of arecanut planting area and the subsequent adjustment and optimization of regional planting structures. Satellite imagery has previously been used to investigate and monitor the agricultural and forestry vegetation in Hainan. However, the monitoring accuracy is affected by the cloudy and rainy climate of this region, as well as the high level of land fragmentation. In this paper, we used PlanetScope imagery at a 3 m spatial resolution over the Hainan arecanut planting area to investigate the high-precision extraction of the arecanut planting distribution based on feature space optimization. First, spectral and textural feature variables were selected to form the initial feature space, followed by the implementation of the random forest algorithm to optimize the feature space. Arecanut planting area extraction models based on the support vector machine (SVM), BP neural network (BPNN), and random forest (RF) classification algorithms were then constructed. The overall classification accuracies of the SVM, BPNN, and RF models optimized by the RF features were determined as 74.82%, 83.67%, and 88.30%, with Kappa coefficients of 0.680, 0.795, and 0.853, respectively. The RF model with optimized features exhibited the highest overall classification accuracy and kappa coefficient. The overall accuracy of the SVM, BPNN, and RF models following feature optimization was improved by 3.90%, 7.77%, and 7.45%, respectively, compared with the corresponding unoptimized classification model. The kappa coefficient also improved. The results demonstrate the ability of PlanetScope satellite imagery to extract the planting distribution of arecanut. Furthermore, the RF is proven to effectively optimize the initial feature space, composed of spectral and textural feature variables, further improving the extraction accuracy of the arecanut planting distribution. This work can act as a theoretical and technical reference for the agricultural and forestry industries.


Sign in / Sign up

Export Citation Format

Share Document