scholarly journals Observations of volcanic SO<sub>2</sub> from MLS on Aura

2015 ◽  
Vol 8 (1) ◽  
pp. 195-209 ◽  
Author(s):  
H. C. Pumphrey ◽  
W. G. Read ◽  
N. J. Livesey ◽  
K. Yang

Abstract. Sulfur dioxide (SO2) is an important atmospheric constituent, particularly in the aftermath of volcanic eruptions. These events can inject large amounts of SO2 into the lower stratosphere, where it is oxidised to form sulfate aerosols; these in turn have a significant effect on the climate. The MLS instrument on the Aura satellite has observed the SO2 mixing ratio in the upper troposphere and lower stratosphere from August 2004 to the present, during which time a number of volcanic eruptions have significantly affected those regions of the atmosphere. We describe the MLS SO2 data and how various volcanic events appear in the data. As the MLS SO2 data are currently not validated we take some initial steps towards their validation. First we establish the level of internal consistency between the three spectral regions in which MLS is sensitive to SO2. We compare SO2 column values calculated from MLS data to total column values reported by the OMI instrument. The agreement is good (within about 1 DU) in cases where the SO2 is clearly at altitudes above 147 hPa.

2014 ◽  
Vol 7 (7) ◽  
pp. 7883-7922
Author(s):  
H. C. Pumphrey ◽  
W. G. Read ◽  
N. J. Livesey ◽  
K. Yang

Abstract. Sulphur dioxide (SO2) is an important atmospheric constituent, particularly in the aftermath of volcanic eruptions. These events can inject large amounts of SO2 into the lower stratosphere, where it is oxidised to form sulphate aerosols; these in turn have a significant effect on the climate. The MLS instrument on the Aura satellite has observed the SO2 mixing ratio in the upper troposphere and lower stratosphere from August 2004 to the present, during which time a number of volcanic eruptions have significantly affected those regions of the atmosphere. We describe the MLS SO2 data and how various volcanic events appear in the data. As the MLS SO2 data are currently not validated we take some initial steps towards their validation. First we establish the level of internal consistency between the three spectral regions in which MLS is sensitive to SO2. We compare SO2 column values calculated from MLS data to total column values reported by the OMI instrument. The agreement is good in cases where the SO2 is clearly at altitudes above 147 hPa.


2015 ◽  
Vol 15 (12) ◽  
pp. 7017-7037 ◽  
Author(s):  
M. Höpfner ◽  
C. D. Boone ◽  
B. Funke ◽  
N. Glatthor ◽  
U. Grabowski ◽  
...  

Abstract. Vertically resolved distributions of sulfur dioxide (SO2) with global coverage in the height region from the upper troposphere to ~20 km altitude have been derived from observations by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on Envisat for the period July 2002 to April 2012. Retrieved volume mixing ratio profiles representing single measurements are characterized by typical errors in the range of 70–100 pptv and by a vertical resolution ranging from 3 to 5 km. Comparison with observations by the Atmospheric Chemistry Experiment Fourier transform spectrometer (ACE-FTS) revealed a slightly varying bias with altitude of −20 to 50 pptv for the MIPAS data set in case of volcanically enhanced concentrations. For background concentrations the comparison showed a systematic difference between the two major MIPAS observation periods. After debiasing, the difference could be reduced to biases within −10 to 20 pptv in the altitude range of 10–20 km with respect to ACE-FTS. Further comparisons of the debiased MIPAS data set with in situ measurements from various aircraft campaigns showed no obvious inconsistencies within a range of around ±50 pptv. The SO2 emissions of more than 30 volcanic eruptions could be identified in the upper troposphere and lower stratosphere (UTLS). Emitted SO2 masses and lifetimes within different altitude ranges in the UTLS have been derived for a large part of these eruptions. Masses are in most cases within estimations derived from other instruments. From three of the major eruptions within the MIPAS measurement period – Kasatochi in August 2008, Sarychev in June 2009 and Nabro in June 2011 – derived lifetimes of SO2 for the altitude ranges 10–14, 14–18 and 18–22 km are 13.3 ± 2.1, 23.6 ± 1.2 and 32.3 ± 5.5 days respectively. By omitting periods with obvious volcanic influence we have derived background mixing ratio distributions of SO2. At 10 km altitude these indicate an annual cycle at northern mid- and high latitudes with maximum values in summer and an amplitude of about 30 pptv. At higher altitudes of about 16–18 km, enhanced mixing ratios of SO2 can be found in the regions of the Asian and the North American monsoons in summer – a possible connection to an aerosol layer discovered by Vernier et al. (2011b) in that region.


2015 ◽  
Vol 15 (4) ◽  
pp. 5801-5847 ◽  
Author(s):  
M. Höpfner ◽  
C. D. Boone ◽  
B. Funke ◽  
N. Glatthor ◽  
U. Grabowski ◽  
...  

Abstract. Vertically resolved distributions of sulfur dioxide (SO2) with global coverage in the height region from the upper troposphere to ~ 20 km altitude have been derived from observations by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on Envisat for the period July 2002 to April 2012. Retrieved volume mixing ratio profiles representing single measurements are characterized by typical errors in the range of 70–100 pptv and by a vertical resolution ranging from 3–5 km. Comparison with ACE-FTS observations revealed a slightly varying bias with altitude of −20 to 50 pptv for the MIPAS dataset in case of volcanically enhanced concentrations. For background concentrations the comparison showed a systematic difference between the two major MIPAS observation periods. After debiasing, the difference could be reduced to biases within −10 to 20 pptv in the altitude range of 10–20 km with respect to ACE-FTS. Further comparisons of the debiased MIPAS dataset with in-situ measurements from various aircraft campaigns showed no obvious inconsistencies within a range of around ±50 pptv. The SO2 emissions of more than thirty volcanic eruptions could be identified in the upper troposphere and lower stratosphere (UTLS). Emitted SO2 masses and lifetimes within different altitude ranges in the UTLS have been derived for a large part of these eruptions. Masses are in most cases within estimations derived from other instruments. From three of the major eruptions within the MIPAS measurement period – Kasatochi in August 2008, Sarychev in June 2009 and Nabro in June 2011 – derived lifetimes of SO2 for the altitude ranges 10–14, 14–18, and 18–22 km are 13.3±2.1, 23.6±1.2, and 32.3±5.5 d, respectively. By omitting periods with obvious volcanic influence we have derived background mixing ratio distributions of SO2. At 10 km altitude these indicate an annual cycle at northern mid- and high latitudes with maximum values in summer and an amplitude of about 30 pptv. At higher altitudes of about 16–18 km enhanced mixing ratios of SO2 can be found in the region of the Asian and the North-American monsoon in summer – a possible connection to an aerosol layer discovered by Vernier et al. (2011b) in that region.


Science ◽  
2012 ◽  
Vol 337 (6090) ◽  
pp. 78-81 ◽  
Author(s):  
Adam E. Bourassa ◽  
Alan Robock ◽  
William J. Randel ◽  
Terry Deshler ◽  
Landon A. Rieger ◽  
...  

The Nabro stratovolcano in Eritrea, northeastern Africa, erupted on 13 June 2011, injecting approximately 1.3 teragrams of sulfur dioxide (SO2) to altitudes of 9 to 14 kilometers in the upper troposphere, which resulted in a large aerosol enhancement in the stratosphere. The SO2 was lofted into the lower stratosphere by deep convection and the circulation associated with the Asian summer monsoon while gradually converting to sulfate aerosol. This demonstrates that to affect climate, volcanic eruptions need not be strong enough to inject sulfur directly to the stratosphere.


2009 ◽  
Vol 137 (8) ◽  
pp. 2493-2514 ◽  
Author(s):  
Charles Chemel ◽  
Maria R. Russo ◽  
John A. Pyle ◽  
Ranjeet S. Sokhi ◽  
Cornelius Schiller

Abstract The development of a severe Hector thunderstorm that formed over the Tiwi Islands, north of Australia, during the Aerosol and Chemical Transport in Tropical Convection/Stratospheric-Climate Links with Emphasis on the Upper Troposphere and Lower Stratosphere (ACTIVE/SCOUT-O3) field campaign in late 2005, is simulated by the Advanced Research Weather Research and Forecasting (ARW) model and the Met Office Unified Model (UM). The general aim of this paper is to investigate the role of isolated deep convection over the tropics in regulating the water content in the upper troposphere/lower stratosphere (UT/LS). Using a horizontal resolution as fine as 1 km, the numerical simulations reproduce the timing, structure, and strength of Hector fairly well when compared with field campaign observations. The sensitivity of results from ARW to horizontal resolution is investigated by running the model in a large-eddy simulation mode with a horizontal resolution of 250 m. While refining the horizontal resolution to 250 m leads to a better representation of convection with respect to rainfall, the characteristics of the Hector thunderstorm are basically similar in space and time to those obtained in the 1-km-horizontal-resolution simulations. Several overshooting updrafts penetrating the tropopause are produced in the simulations during the mature stage of Hector. The penetration of rising towering cumulus clouds into the LS maintains the entrainment of air at the interface between the UT and the LS. Vertical exchanges resulting from this entrainment process have a significant impact on the redistribution of atmospheric constituents within the UT/LS region at the scale of the islands. In particular, a large amount of water is injected in the LS. The fate of the ice particles as Hector develops drives the water vapor mixing ratio to saturation by sublimation of the injected ice particles, moistening the air in the LS. The moistening was found to be fairly significant above 380 K and averaged about 0.06 ppmv in the range 380–420 K for ARW. As for UM, the moistening was found to be much larger (about 2.24 ppmv in the range of 380–420 K) than for ARW. This result confirms that convective transport can play an important role in regulating the water vapor mixing ratio in the LS.


2020 ◽  
Author(s):  
Masatomo Fujiwara ◽  
Tetsu Sakai ◽  
Koichi Shiraishi ◽  
Yoichi Inai ◽  
Sergey Khaykin ◽  
...  

Abstract. Eastward airmass transport from the Asian summer monsoon (ASM) anticyclone in the upper troposphere and lower stratosphere (UTLS) often involves eastward shedding vortices, which can cover most of the Japanese archipelago. We investigated the aerosol characteristics of these vortices by analysing data from two lidar systems in Japan, at Tsukuba (36.1° N, 140.1° E) and Fukuoka (33.55° N, 130.36° E), during the summer of 2018. We observed several events with enhanced particle signals at Tsukuba at 15.5–18 km altitude (at or above the local tropopause) during August–September 2018, with a backscattering ratio of ~1.10 and particle depolarization of ~5 % (i.e., not spherical, but more spherical than ice crystals). These particle characteristics may be consistent with those of solid aerosol particles, such as ammonium nitrate. Each event had a timescale of a few days. During the same study period, we also observed similar enhanced particle signals in the lower stratosphere at Fukuoka. The upper troposphere is often covered by cirrus clouds at both lidar sites. Backward trajectory calculations for these sites for days with enhanced particle signals in the lower stratosphere and days without indicate that the former airmasses originated within the ASM anticyclone, and the latter more from edge regions. Reanalysis carbon-monoxide and satellite water-vapour data indicate that eastward shedding vortices were involved in the observed aerosol enhancements. Satellite aerosol data confirm that the period and latitudinal region were free from the direct influence of documented volcanic eruptions and high latitude forest fires. Our results indicate that the Asian Tropopause Aerosol Layer (ATAL) over the ASM region extends east towards Japan in association with the eastward shedding vortices, and that lidar systems in Japan can detect at least the lower stratospheric portion of the ATAL during periods when the lower stratosphere is undisturbed by volcanic eruptions and forest fires. The upper tropospheric portion of the ATAL is either depleted by tropospheric processes (convection and wet scavenging) during eastward transport or is obscured by much stronger cirrus cloud signals.


2021 ◽  
Vol 21 (4) ◽  
pp. 3073-3090
Author(s):  
Masatomo Fujiwara ◽  
Tetsu Sakai ◽  
Tomohiro Nagai ◽  
Koichi Shiraishi ◽  
Yoichi Inai ◽  
...  

Abstract. Eastward air-mass transport from the Asian summer monsoon (ASM) anticyclone in the upper troposphere and lower stratosphere (UTLS) often involves eastward-shedding vortices, which can cover most of the Japanese archipelago. We investigated the aerosol characteristics of these vortices by analysing data from two lidar systems in Japan, at Tsukuba (36.1∘ N, 140.1∘ E) and Fukuoka (33.55∘ N, 130.36∘ E), during the summer of 2018. We observed several events with enhanced particle signals at Tsukuba at 15.5–18 km of altitude (at or above the local tropopause) during August–September 2018, with a backscattering ratio of ∼ 1.10 and particle depolarization of ∼ 5 % (i.e. not spherical, but more spherical than ice crystals). These particle characteristics may be consistent with those of solid aerosol particles, such as ammonium nitrate. Each event had a timescale of a few days. During the same study period, we also observed similar enhanced particle signals in the lower stratosphere at Fukuoka. The upper troposphere is often covered by cirrus clouds at both lidar sites. Backward trajectory calculations for these sites for days with enhanced particle signals in the lower stratosphere and days without indicate that the former air masses originated within the ASM anticyclone and the latter more from edge regions. Reanalysis carbon monoxide and satellite water vapour data indicate that eastward-shedding vortices were involved in the observed aerosol enhancements. Satellite aerosol data confirm that the period and latitudinal region were free from the direct influence of documented volcanic eruptions and high-latitude forest fires. Our results indicate that the Asian tropopause aerosol layer (ATAL) over the ASM region extends east towards Japan in association with the eastward-shedding vortices and that lidar systems in Japan can detect at least the lower-stratospheric portion of the ATAL during periods when the lower stratosphere is undisturbed by volcanic eruptions and forest fires. The upper-tropospheric portion of the ATAL is either depleted by tropospheric processes (convection and wet scavenging) during eastward transport or is obscured by much stronger cirrus cloud signals.


2008 ◽  
Vol 8 (17) ◽  
pp. 5245-5261 ◽  
Author(s):  
C. Kiemle ◽  
M. Wirth ◽  
A. Fix ◽  
G. Ehret ◽  
U. Schumann ◽  
...  

Abstract. In the tropics, deep convection is the major source of uncertainty in water vapor transport to the upper troposphere and into the stratosphere. Although accurate measurements in this region would be of first order importance to better understand the processes that govern stratospheric water vapor concentrations and trends in the context of a changing climate, they are sparse because of instrumental shortcomings and observational challenges. Therefore, the Falcon research aircraft of the Deutsches Zentrum für Luft- und Raumfahrt (DLR) flew a zenith-viewing water vapor differential absorption lidar (DIAL) during the Tropical Convection, Cirrus and Nitrogen Oxides Experiment (TROCCINOX) in 2004 and 2005 in Brazil. The measurements were performed alternatively on three water vapor absorption lines of different strength around 940 nm. These are the first aircraft DIAL measurements in the tropical upper troposphere and in the mid-latitudes lower stratosphere. Sensitivity analyses reveal an accuracy of 5% between altitudes of 8 and 16 km. This is confirmed by intercomparisons with the Fast In-situ Stratospheric Hygrometer (FISH) and the Fluorescent Advanced Stratospheric Hygrometer (FLASH) onboard the Russian M-55 Geophysica research aircraft during five coordinated flights. The average relative differences between FISH and DIAL amount to −3%±8% and between FLASH and DIAL to −8%±14%, negative meaning DIAL is more humid. The average distance between the probed air masses was 129 km. The DIAL is found to have no altitude- or latitude-dependent bias. A comparison with the balloon ascent of a laser absorption spectrometer gives an average difference of 0%±19% at a distance of 75 km. Six tropical DIAL under-flights of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on board ENVISAT reveal a mean difference of −8%±49% at an average distance of 315 km. While the comparison with MIPAS is somewhat less significant due to poorer comparison conditions, the agreement with the in-situ hygrometers provides evidence of the excellent quality of FISH, FLASH and DIAL. Most DIAL profiles exhibit a smooth exponential decrease of water vapor mixing ratio in the tropical upper troposphere to lower stratosphere transition. The hygropause with a minimum mixing ratio of 2.5 µmol/mol is found between 15 and 17 km. A high-resolution (2 km horizontal, 0.2 km vertical) DIAL cross section through the anvil outflow of tropical convection shows that the ambient humidity is increased by a factor of three across 100 km.


2015 ◽  
Vol 15 (9) ◽  
pp. 13315-13346 ◽  
Author(s):  
M. Fujiwara ◽  
T. Hibino ◽  
S. K. Mehta ◽  
L. Gray ◽  
D. Mitchell ◽  
...  

Abstract. Global temperature response to the eruptions of Mount Agung in 1963, El Chichón in 1982 and Mount Pinatubo in 1991 is investigated using nine reanalysis datasets (JRA-55, MERRA, ERA-Interim, NCEP-CFSR, JRA-25, ERA-40, NCEP-1, NCEP-2, and 20CR). Multiple linear regression is applied to the zonal and monthly mean time series of temperature for two periods, 1979–2009 (for eight reanalysis datasets) and 1958–2001 (for four reanalysis datasets), by considering explanatory factors of seasonal harmonics, linear trends, Quasi-Biennial Oscillation, solar cycle, and El Niño Southern Oscillation. The residuals are used to define the volcanic signals for the three eruptions separately. In response to the Mount Pinatubo eruption, most reanalysis datasets show strong warming signals (up to 2–3 K for one-year average) in the tropical lower stratosphere and weak cooling signals (down to −1 K) in the subtropical upper troposphere. For the El Chichón eruption, warming signals in the tropical lower stratosphere are somewhat smaller than those for the Mount Pinatubo eruption. The response to the Mount Agung eruption is asymmetric about the equator with strong warming in the Southern Hemisphere midlatitude upper troposphere to lower stratosphere. The response to three other smaller-scale eruptions in the 1960s and 1970s is also investigated. Comparison of the results from several different reanalysis datasets confirms the atmospheric temperature response to these major eruptions qualitatively, but also shows quantitative differences even among the most recent reanalysis datasets.


Sign in / Sign up

Export Citation Format

Share Document