scholarly journals LOAC: a small aerosol optical counter/sizer for ground-based and balloon measurements of the size distribution and nature of atmospheric particles – Part 1: Principle of measurements and instrument evaluation

2016 ◽  
Vol 9 (4) ◽  
pp. 1721-1742 ◽  
Author(s):  
Jean-Baptiste Renard ◽  
François Dulac ◽  
Gwenaël Berthet ◽  
Thibaut Lurton ◽  
Damien Vignelles ◽  
...  

Abstract. The study of aerosols in the troposphere and in the stratosphere is of major importance both for climate and air quality studies. Among the numerous instruments available, optical aerosol particles counters (OPCs) provide the size distribution in diameter range from about 100 nm to a few tens of µm. Most of them are very sensitive to the nature of aerosols, and this can result in significant biases in the retrieved size distribution. We describe here a new versatile optical particle/sizer counter named LOAC (Light Optical Aerosol Counter), which is light and compact enough to perform measurements not only at the surface but under all kinds of balloons in the troposphere and in the stratosphere. LOAC is an original OPC performing observations at two scattering angles. The first one is around 12°, and is almost insensitive to the refractive index of the particles; the second one is around 60° and is strongly sensitive to the refractive index of the particles. By combining measurement at the two angles, it is possible to retrieve the size distribution between 0.2 and 100 µm and to estimate the nature of the dominant particles (droplets, carbonaceous, salts and mineral particles) when the aerosol is relatively homogeneous. This typology is based on calibration charts obtained in the laboratory. The uncertainty for total concentrations measurements is ±20 % when concentrations are higher than 1 particle cm−3 (for a 10 min integration time). For lower concentrations, the uncertainty is up to about ±60 % for concentrations smaller than 10−2 particle cm−3. Also, the uncertainties in size calibration are ±0.025 µm for particles smaller than 0.6 µm, 5 % for particles in the 0.7–2 µm range, and 10 % for particles greater than 2 µm. The measurement accuracy of submicronic particles could be reduced in a strongly turbid case when concentration of particles > 3 µm exceeds a few particles  cm−3. Several campaigns of cross-comparison of LOAC with other particle counting instruments and remote sensing photometers have been conducted to validate both the size distribution derived by LOAC and the retrieved particle number density. The typology of the aerosols has been validated in well-defined conditions including urban pollution, desert dust episodes, sea spray, fog, and cloud. Comparison with reference aerosol mass monitoring instruments also shows that the LOAC measurements can be successfully converted to mass concentrations.

2015 ◽  
Vol 8 (9) ◽  
pp. 9993-10056 ◽  
Author(s):  
J.-B. Renard ◽  
F. Dulac ◽  
G. Berthet ◽  
T. Lurton ◽  
D. Vignelles ◽  
...  

Abstract. The study of aerosols in the troposphere and in the stratosphere is of major importance both for climate and air quality studies. Among the numerous instruments available, aerosol particles counters provide the size distribution in diameter range from few hundreds of nm to few tens of μm. Most of them are very sensitive to the nature of aerosols, and this can result in significant biases in the retrieved size distribution. We describe here a new versatile optical particle/sizer counter (OPC) named LOAC (Light Optical Aerosol Counter), which is light and compact enough to perform measurements not only at the surface but under all kinds of balloons in the troposphere and in the stratosphere. LOAC is an original OPC performing observations at two scattering angles. The first one is around 12°, and is almost insensitive to the nature of the particles; the second one is around 60° and is strongly sensitive to the refractive index of the particles. By combining measurement at the two angles, it is possible to retrieve accurately the size distribution and to estimate the nature of the dominant particles (droplets, carbonaceous, salts and mineral particles) in several size classes. This topology is based on calibration charts obtained in the laboratory. Several campaigns of cross-comparison of LOAC with other particle counting instruments and remote sensing photometers have been conducted to validate both the size distribution derived by LOAC and the retrieved particle number density. The topology of the aerosols has been validated in well-defined conditions including urban pollution, desert dust episodes, fog, and cloud. Comparison with reference aerosol mass monitoring instruments also shows that the LOAC measurements can be successfully converted to mass concentrations. All these tests indicate that no bias is present in the LOAC measurements and in the corresponding data processing.


2015 ◽  
Vol 8 (1) ◽  
pp. 1203-1259 ◽  
Author(s):  
J.-B. Renard ◽  
F. Dulac ◽  
G. Berthet ◽  
T. Lurton ◽  
D. Vignelles ◽  
...  

Abstract. The study of aerosols in the troposphere and in the stratosphere is of major importance both for climate and air quality studies. Among the numerous instruments available, aerosol particles counters provide the size distribution in diameter range from few hundreds of nm to few tens of μm. Most of them are very sensitive to the nature of aerosols, and this can result in significant biases in the retrieved size distribution. We describe here a new versatile optical particle/sizer counter (OPC) named LOAC (Light Optical Aerosols Counter), which is light and compact enough to perform measurements not only at the surface but under all kinds of balloons in the troposphere and in the stratosphere. LOAC is an original OPC performing observations at two scattering angles. The first one is around 12°, and is almost insensitive to the nature of the particles; the second one is around 60° and is strongly sensitive to the refractive index of the particles. By combining measurement at the two angles, it is possible to retrieve accurately the size distribution and to estimate the nature of the dominant particles (droplets, carbonaceous, salts and mineral particles) in several size classes. This speciation is based on calibration charts obtained in the laboratory. Several campaigns of cross-comparison of LOAC with other particle counting instruments and remote sensing photometers have been conducted to validate both the size distribution derived by LOAC and the retrieved particle number density. The speciation of the aerosols has been validated in well-defined conditions including urban pollution, desert dust episodes, fog, and cloud. Comparison with reference aerosol mass monitoring instruments also shows that the LOAC measurements can be successfully converted to mass concentrations. All these tests indicate that no bias is present in the LOAC measurements and in the corresponding data processing.


2014 ◽  
Vol 7 (10) ◽  
pp. 3247-3261 ◽  
Author(s):  
E. Kassianov ◽  
J. Barnard ◽  
M. Pekour ◽  
L. K. Berg ◽  
J. Shilling ◽  
...  

Abstract. We propose here a novel approach for retrieving in parallel the effective density and real refractive index of weakly absorbing aerosol from optical and size distribution measurements. Here we define "weakly absorbing" as aerosol single-scattering albedos that exceed 0.95 at 0.5 μm. The required optical measurements are the scattering coefficient and the hemispheric backscatter fraction, obtained in this work from an integrating nephelometer. The required size spectra come from mobility and aerodynamic particle size spectrometers commonly referred to as a scanning mobility particle sizer and an aerodynamic particle sizer. The performance of this approach is first evaluated using a sensitivity study with synthetically generated but measurement-related inputs. The sensitivity study reveals that the proposed approach is robust to random noise; additionally the uncertainties of the retrieval are almost linearly proportional to the measurement errors, and these uncertainties are smaller for the real refractive index than for the effective density. Next, actual measurements are used to evaluate our approach. These measurements include the optical, microphysical, and chemical properties of weakly absorbing aerosol which are representative of a variety of coastal summertime conditions observed during the Two-Column Aerosol Project (TCAP; http://campaign.arm.gov/tcap/). The evaluation includes calculating the root mean square error (RMSE) between the aerosol characteristics retrieved by our approach, and the same quantities calculated using the conventional volume mixing rule for chemical constituents. For dry conditions (defined in this work as relative humidity less than 55%) and sub-micron particles, a very good (RMSE ~ 3%) and reasonable (RMSE ~ 28%) agreement is obtained for the retrieved real refractive index (1.49 ± 0.02) and effective density (1.68 ± 0.21), respectively. Our approach permits discrimination between the retrieved aerosol characteristics of sub-micron and sub-10-micron particles. The evaluation results also reveal that the retrieved density and refractive index tend to decrease with an increase of the relative humidity.


2014 ◽  
Vol 7 (5) ◽  
pp. 4949-4986
Author(s):  
E. Kassianov ◽  
J. Barnard ◽  
M. Pekour ◽  
L. K. Berg ◽  
J. Shilling ◽  
...  

Abstract. We propose here a novel approach for retrieving in parallel the effective density and real refractive index of weakly absorbing aerosol from optical and size distribution measurements. Here we define "weakly absorbing" as aerosol single-scattering albedos that exceed 0.95 at 0.5 μm. The required optical measurements are the scattering coefficient and the hemispheric backscatter fraction, obtained in this work from an integrating nephelometer. The required size spectra come from a Scanning Mobility Particle Sizer and an Aerodynamic Particle Sizer. The performance of this approach is first evaluated using a sensitivity study with synthetically generated but measurement-related inputs. The sensitivity study reveals that the proposed approach is robust to random noise; additionally the uncertainties of the retrieval are almost linearly proportional to the measurement errors, and these uncertainties are smaller for the real refractive index than for the effective density. Next, actual measurements are used to evaluate our approach. These measurements include the optical, microphysical, and chemical properties of weakly absorbing aerosol which are representative of a variety of coastal summertime conditions observed during the Two-Column Aerosol Project (TCAP; http://campaign.arm.gov/tcap/). The evaluation includes calculating the root mean square error (RMSE) between the aerosol characteristics retrieved by our approach, and the same quantities calculated using the conventional volume mixing rule for chemical constituents. For dry conditions (defined in this work as relative humidity less than 55%) and sub-micron particles, a very good (RMSE ~ 3%) and reasonable (RMSE ~ 28%) agreement is obtained for the retrieved real refractive index (1.49 ± 0.02) and effective density (1.68 ± 0.21), respectively. Our approach permits discrimination between the retrieved aerosol characteristics of sub-micron and sub-10-micron particles. The evaluation results also reveal that the retrieved density and refractive index tend to decrease with an increase of the relative humidity.


2014 ◽  
Vol 14 (18) ◽  
pp. 10061-10084 ◽  
Author(s):  
D. Liu ◽  
J. D. Allan ◽  
D. E. Young ◽  
H. Coe ◽  
D. Beddows ◽  
...  

Abstract. Black carbon aerosols (BC) at a London urban site were characterised in both winter- and summertime 2012 during the Clean Air for London (ClearfLo) project. Positive matrix factorisation (PMF) factors of organic aerosol mass spectra measured by a high-resolution aerosol mass spectrometer (HR-AMS) showed traffic-dominant sources in summer but in winter the influence of additional non-traffic sources became more important, mainly from solid fuel sources (SF). Measurements using a single particle soot photometer (SP2, DMT), showed the traffic-dominant BC exhibited an almost uniform BC core size (Dc) distribution with very thin coating thickness throughout the detectable range of Dc. However, the size distribution of Dc (project average mass median Dc = 149 ± 22 nm in winter, and 120 ± 6 nm in summer) and BC coating thickness varied significantly in winter. A novel methodology was developed to attribute the BC number concentrations and mass abundances from traffic (BCtr) and from SF (BCsf), by using a 2-D histogram of the particle optical properties as a function of BC core size, as measured by the SP2. The BCtr and BCsf showed distinctly different Dc distributions and coating thicknesses, with BCsf displaying larger Dc and larger coating thickness compared to BCtr. BC particles from different sources were also apportioned by applying a multiple linear regression between the total BC mass and each AMS-PMF factor (BC–AMS–PMF method), and also attributed by applying the absorption spectral dependence of carbonaceous aerosols to 7-wavelength Aethalometer measurements (Aethalometer method). Air masses that originated from westerly (W), southeasterly (SE), and easterly (E) sectors showed BCsf fractions that ranged from low to high, and whose mass median Dc values were 137 ± 10 nm, 143 ± 11 nm and 169 ± 29 nm, respectively. The corresponding bulk relative coating thickness of BC (coated particle size/BC core – Dp/Dc) for these same sectors was 1.28 ± 0.07, 1.45 ± 0.16 and 1.65 ± 0.19. For W, SE and E air masses, the number fraction of BCsf ranged from 6 ± 2% to 11 ± 5% to 18 ± 10%, respectively, but importantly the larger BC core sizes lead to an increased fraction of BCsf in terms of mass than number (for W, SE and E air masses, the BCsf mass fractions ranged from 16 ± 6%, 24 ± 10% and 39 ± 14%, respectively). An increased fraction of non-BC particles (particles that did not contain a BC core) was also observed when SF sources were more significant. The BC mass attribution by the SP2 method agreed well with the BC–AMS–PMF multiple linear regression method (BC–AMS–PMF : SP2 ratio = 1.05, r2 = 0.80) over the entire experimental period. Good agreement was found between BCsf attributed with the Aethalometer model and the SP2. However, the assumed absorption Ångström exponent (αwb) had to be changed according to the different air mass sectors to yield the best comparison with the SP2. This could be due to influences of fuel type or burn phase.


2016 ◽  
Vol 9 (1) ◽  
pp. 103-114 ◽  
Author(s):  
G. I. Gkatzelis ◽  
D. K. Papanastasiou ◽  
K. Florou ◽  
C. Kaltsonoudis ◽  
E. Louvaris ◽  
...  

Abstract. An experimental methodology was developed to measure the nonvolatile particle number concentration using a thermodenuder (TD). The TD was coupled with a high-resolution time-of-flight aerosol mass spectrometer, measuring the chemical composition and mass size distribution of the submicrometer aerosol and a scanning mobility particle sizer (SMPS) that provided the number size distribution of the aerosol in the range from 10 to 500 nm. The method was evaluated with a set of smog chamber experiments and achieved almost complete evaporation (> 98 %) of secondary organic as well as freshly nucleated particles, using a TD temperature of 400 °C and a centerline residence time of 15 s. This experimental approach was applied in a winter field campaign in Athens and provided a direct measurement of number concentration and size distribution for particles emitted from major pollution sources. During periods in which the contribution of biomass burning sources was dominant, more than 80 % of particle number concentration remained after passing through the thermodenuder, suggesting that nearly all biomass burning particles had a nonvolatile core. These remaining particles consisted mostly of black carbon (60 % mass contribution) and organic aerosol (OA; 40 %). Organics that had not evaporated through the TD were mostly biomass burning OA (BBOA) and oxygenated OA (OOA) as determined from AMS source apportionment analysis. For periods during which traffic contribution was dominant 50–60 % of the particles had a nonvolatile core while the rest evaporated at 400 °C. The remaining particle mass consisted mostly of black carbon with an 80 % contribution, while OA was responsible for another 15–20 %. Organics were mostly hydrocarbon-like OA (HOA) and OOA. These results suggest that even at 400 °C some fraction of the OA does not evaporate from particles emitted from common combustion processes, such as biomass burning and car engines, indicating that a fraction of this type of OA is of extremely low volatility.


2021 ◽  
Author(s):  
Pak Lun Fung ◽  
Martha Arbayani Zaidan ◽  
Ola Surakhi ◽  
Sasu Tarkoma ◽  
Tuukka Petäjä ◽  
...  

Abstract. In air quality research, often only particle mass concentrations as indicators of aerosol particles are considered. However, the mass concentrations do not provide sufficient information to convey the full story of fractionated size distribution, which are able to deposit differently on respiratory system and cause various harm. Aerosol size distribution measurements rely on a variety of techniques to classify the aerosol size and measure the size distribution. From the raw data the ambient size distribution is determined utilising a suite of inversion algorithms. However, the inversion problem is quite often ill-posed and challenging to invert. Due to the instrumental insufficiency and inversion limitations, models for fractionated particle size distribution are of great significance to fill the missing gaps or negative values. The study at hand involves a merged particle size distribution, from a scanning mobility particle sizer (NanoSMPS) and an optical particle sizer (OPS) covering the aerosol size distributions from 0.01 to 0.42 μm (electrical mobility equivalent size) and 0.3 μm to 10 μm (optical equivalent size) and meteorological parameters collected at an urban background region in Amman, Jordan in the period of 1st Aug 2016–31st July 2017. We develop and evaluate feed-forward neural network (FFNN) models to estimate number concentrations at particular size bin with (1) meteorological parameters, (2) number concentration at other size bins, and (3) both of the above as input variables. Two layers with 10–15 neurons are found to be the optimal option. Lower model performance is observed at the lower edge (0.01 


2019 ◽  
Vol 202 ◽  
pp. 149-159 ◽  
Author(s):  
Gerson P. Almeida ◽  
Antônio T. Bittencourt ◽  
Marçal S. Evangelista ◽  
Marcelo S. Vieira-Filho ◽  
Adalgiza Fornaro

Sign in / Sign up

Export Citation Format

Share Document