scholarly journals Fast computation of the geoelectric field using the method of elementary current systems and planar Earth models

2004 ◽  
Vol 22 (1) ◽  
pp. 101-113 ◽  
Author(s):  
A. Viljanen ◽  
A. Pulkkinen ◽  
O. Amm ◽  
R. Pirjola ◽  
T. Korja ◽  
...  

Abstract. The method of spherical elementary current systems provides an accurate modelling of the horizontal component of the geomagnetic variation field. The interpolated magnetic field is used as input to calculate the horizontal geoelectric field. We use planar layered (1-D) models of the Earth's conductivity, and assume that the electric field is related to the local magnetic field by the plane wave surface impedance. There are locations in which the conductivity structure can be approximated by a 1-D model, as demonstrated with the measurements of the Baltic Electromagnetic Array Research project. To calculate geomagnetically induced currents (GIC), we need the spatially integrated electric field typically in a length scale of 100km. We show that then the spatial variation of the electric field can be neglected if we use the measured or interpolated magnetic field at the site of interest. In other words, even the simple plane wave model is fairly accurate for GIC purposes. Investigating GIC in the Finnish high-voltage power system and in the natural gas pipeline, we find a good agreement between modelled and measured values, with relative errors less than 30% for large GIC values. Key words. Geomagnetism and paleomagnetism (geomagnetic induction; rapid time variations) – Ionosphere (electric field and currents)

2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Michal Švanda ◽  
Anna Smičková ◽  
Tatiana Výbošťoková

AbstractWe investigate the maximum expected magnitudes of the geomagnetically induced currents (GICs) in the Czech transmission power network. We compute a model utilising the Lehtinen–Pirjola method, considering the plane-wave model of the geoelectric field, and using the transmission network parameters kindly provided by the operator. We find that the maximum amplitudes expected in the nodes of the Czech transmission grid during the Halloween storm-like event are about 15 A. For the “extreme-storm” conditions with a 1-V/km geoelectric field, the expected maxima do not exceed 40 A. We speculate that the recently proven statistical correlation between the increased geomagnetic activity and anomaly rate in the power grid may be due to the repeated exposure of the devices to the low-amplitude GICs. Graphical Abstract


Author(s):  
Valentina Zharkova ◽  
Qian Xia

In this article we aim to investigate the kinetic turbulence in a reconnecting current sheet (RCS) with X- and O-nullpoints and to explore its link to the features of accelerated particles. We carry out simulations of magnetic reconnection in a thin current sheet with 3D magnetic field topology affected by tearing instability until the formation of two large magnetic islands using particle-in-cell (PIC) approach. The model utilizes a strong guiding field that leads to the separation of the particles of opposite charges, the generation of a strong polarization electric field across the RCS, and suppression of kink instability in the “out-of-plane” direction. The accelerated particles of the same charge entering an RCS from the opposite edges are shown accelerated to different energies forming the “bump-in-tail” velocity distributions that, in turn, can generate plasma turbulence in different locations. The turbulence-generated waves produced by either electron or proton beams can be identified from the energy spectra of electromagnetic field fluctuations in the phase and frequency domains. From the phase space analysis we gather that the kinetic turbulence may be generated by accelerated particle beams, which are later found to evolve into a phase-space hole indicating the beam breakage. This happens at some distance from the particle entrance into an RCS, e.g. about 7di (ion inertial depth) for the electron beam and 12di for the proton beam. In a wavenumber space the spectral index of the power spectrum of the turbulent magnetic field near the ion inertial length is found to be −2.7 that is consistent with other estimations. The collective turbulence power spectra are consistent with the high-frequency fluctuations of perpendicular electric field, or upper hybrid waves, to occur in a vicinity of X-nullpoints, where the Langmuir (LW) can be generated by accelerated electrons with high growth rates, while further from X-nullponts or on the edges of magnetic islands, where electrons become ejected and start moving across the magnetic field lines, Bernstein waves can be generated. The frequency spectra of high- and low-frequency waves are explored in the kinetic turbulence in the parallel and perpendicular directions to the local magnetic field, showing noticeable lower hybrid turbulence occurring between the electron’s gyro- and plasma frequencies seen also in the wavelet spectra. Fluctuation of the perpendicular electric field component of turbulence can be consistent with the oblique whistler waves generated on the ambient density fluctuations by intense electron beams. This study brings attention to a key role of particle acceleration in generation kinetic turbulence inside current sheets.


2004 ◽  
Vol 22 (7) ◽  
pp. 2515-2523 ◽  
Author(s):  
J. S. Pickett ◽  
L.-J. Chen ◽  
S. W. Kahler ◽  
O. Santolík ◽  
D. A. Gurnett ◽  
...  

Abstract. Isolated electrostatic structures are observed throughout much of the 4RE by 19.6RE Cluster orbit. These structures are observed in the Wideband plasma wave instrument's waveform data as bipolar pulses (one positive and one negative peak in the electric field amplitude) and tripolar pulses (two positive and one negative peak, or vice versa). These structures are observed at all of the boundary layers, in the solar wind and magnetosheath, and along auroral field lines at 4.5-6.5RE. Using the Wideband waveform data from the various Cluster spacecraft we have carried out a survey of the amplitudes and time durations of these structures and how these quantities vary with the local magnetic field strength. Such a survey has not been carried out before, and it reveals certain characteristics of solitary structures in a finite magnetic field, a topic still inadequately addressed by theories. We find that there is a broad range of electric field amplitudes at any specific magnetic field strength, and there is a general trend for the electric field amplitudes to increase as the strength of the magnetic field increases over a range of 5 to 500nT. We provide a possible explanation for this trend that relates to the structures being Bernstein-Greene-Kruskal mode solitary waves. There is no corresponding dependence of the duration of the structures on the magnetic field strength, although a plot of these two quantities reveals the unexpected result that with the exception of the magnetosheath, all of the time durations for all of the other regions are comparable, whereas the magnetosheath time durations clearly are in a different category of much smaller time duration. We speculate that this implies that the structures are much smaller in size. The distinctly different pulse durations for the magnetosheath pulses indicate the possibility that the pulses are generated by a mechanism which is different from the mechanism operating in other regions.


Geophysics ◽  
2003 ◽  
Vol 68 (2) ◽  
pp. 497-505 ◽  
Author(s):  
Michael Becken ◽  
Laust B. Pedersen

We investigate a transformation of magnetic transfer functions into the tangential‐electric mode part of the impedance tensor in the scope of the plane‐wave electromagnetic tensor–VLF method. The transformation, which is applicable to any 2D data representing the response of arbitrary 3D geoelectric structures, overcomes the difficulties of quantitative interpretation of magnetic transfer functions, which predominantly provide a measure of the lateral changes of the electrical conductivity in the earth. We require densely sampled magnetic transfer functions of one frequency as input data. These may be decomposed into their normal and anomalous parts (deviation from the response of a layered earth) for a unit external plane‐wave source field using the Hilbert transform relationship between the magnetic field components. Faraday's law then directly provides the anomalous toroidal electric field. Unfortunately, there is no chance to estimate the normal electric field from magnetic data, since the magnetic field is not sensitive to a layered earth. This constant must be provided as a boundary condition, e.g., from one ground measurement, to derive an impedance tensor and related apparent resistivities and phases.


Jurnal Teknik ◽  
2018 ◽  
Vol 7 (1) ◽  
Author(s):  
Mauludi Manfaluthy

WHO (World Health Organization) concludes that not much effect is caused by electric field up to 20 kV / m in humans. WHO standard also mentions that humans will not be affected by the magnetic field under  100 micro tesla and that the electric field will affect the human body with a maximum standard of 5,000 volts per meter. In this study did not discuss about the effect of high voltage radiation SUTT (High Voltage Air Channel) with human health. The research will focus on energy utilization of SUTT radiation. The combination of electric field and magnetic field on SUTT (70-150KV) can generate electromagnetic (EM) and radiation waves, which are expected to be converted to turn on street lights around the location of high voltage areas or into other forms. The design of this prototype works like an antenna in general that captures electromagnetic signals and converts them into AC waves. With a capacitor that can store the potential energy of AC and Schottky diode waves created specifically for low frequency waves, make the current into one direction (DC). From the research results obtained the current generated from the radiation is very small even though the voltage is big enough.Keywords : Radiance Energy, Joule Thief, and  LED Module.


2021 ◽  
Vol 87 (2) ◽  
Author(s):  
Swati Baruah ◽  
U. Sarma ◽  
R. Ganesh

Lane formation dynamics in externally driven pair-ion plasma (PIP) particles is studied in the presence of external magnetic field using Langevin dynamics (LD) simulation. The phase diagram obtained distinguishing the no-lane and lane states is systematically determined from a study of various Coulomb coupling parameter values. A peculiar lane formation-disintegration parameter space is identified; lane formation area extended to a wide range of Coulomb coupling parameter values is observed before disappearing to a mixed phase. The different phases are identified by calculating the order parameter. This and the critical parameters are calculated directly from LD simulation. The critical electric field strength value above which the lanes are formed distinctly is obtained, and it is observed that in the presence of the external magnetic field, the PIP system requires a higher value of the electric field strength to enter into the lane formation state than that in the absence of the magnetic field. We further find out the critical value of electric field frequency beyond which the system exhibits a transition back to the disordered state and this critical frequency is found as an increasing function of the electric field strength in the presence of an external magnetic field. The movement of the lanes is also observed in a direction perpendicular to that of the applied electric and magnetic field directions, which reveals the existence of the electric field drift in the system under study. We also use an oblique force field as the external driving force, both in the presence and absence of the external magnetic field. The application of this oblique force changes the orientation of the lane structures for different applied oblique angle values.


2003 ◽  
Vol 10 (1/2) ◽  
pp. 45-52 ◽  
Author(s):  
R. E. Ergun ◽  
L. Andersson ◽  
C. W. Carlson ◽  
D. L. Newman ◽  
M. V. Goldman

Abstract. Direct observations of magnetic-field-aligned (parallel) electric fields in the downward current region of the aurora provide decisive evidence of naturally occurring double layers. We report measurements of parallel electric fields, electron fluxes and ion fluxes related to double layers that are responsible for particle acceleration. The observations suggest that parallel electric fields organize into a structure of three distinct, narrowly-confined regions along the magnetic field (B). In the "ramp" region, the measured parallel electric field forms a nearly-monotonic potential ramp that is localized to ~ 10 Debye lengths along B. The ramp is moving parallel to B at the ion acoustic speed (vs) and in the same direction as the accelerated electrons. On the high-potential side of the ramp, in the "beam" region, an unstable electron beam is seen for roughly another 10 Debye lengths along B. The electron beam is rapidly stabilized by intense electrostatic waves and nonlinear structures interpreted as electron phase-space holes. The "wave" region is physically separated from the ramp by the beam region. Numerical simulations reproduce a similar ramp structure, beam region, electrostatic turbulence region and plasma characteristics as seen in the observations. These results suggest that large double layers can account for the parallel electric field in the downward current region and that intense electrostatic turbulence rapidly stabilizes the accelerated electron distributions. These results also demonstrate that parallel electric fields are directly associated with the generation of large-amplitude electron phase-space holes and plasma waves.


Sign in / Sign up

Export Citation Format

Share Document