scholarly journals Temporal-spatial structure of magnetic merging at the magnetopause inferred from 557.7-nm all-sky images

2004 ◽  
Vol 22 (8) ◽  
pp. 2917-2942 ◽  
Author(s):  
N. C. Maynard ◽  
J. Moen ◽  
W. J. Burke ◽  
M. Lester ◽  
D. M. Ober ◽  
...  

Abstract. We demonstrate that high-resolution 557.7-nm all-sky images are useful tools for investigating the spatial and temporal evolution of merging on the dayside magnetopause. Analysis of ground and satellite measurements leads us to conclude that high-latitude merging events can occur at multiple sites simultaneously and vary asynchronously on time scales of 30s to 3min. Variations of 557.7nm emissions were observed at a 10s cadence at Ny-Ålesund on 19 December 2001, while significant changes in the IMF clock angle were reaching the magnetopause. The optical patterns are consistent with a scenario in which merging occurs around the rim of the high-latitude cusp at positions dictated by the IMF clock angle. Electrons energized at merging sites represent plausible sources for 557.7nm emissions in the cusp. Polar observations at the magnetopause have directly linked enhanced fluxes of ≥0.5keV electrons with merging. Spectra of electrons responsible for some of the emissions, measured during a DMSP F15 overflight, exhibit "inverted-V" features, indicating further acceleration above the ionosphere. SuperDARN spectral width boundaries, characteristic of open-closed field line transitions, are located at the equatorward edge of the 557.7nm emissions. Optical data suggest that with IMF BY>0, the Northern Hemisphere cusp divides into three source regions. When the IMF clock angle was ~150° structured 557.7-nm emissions came from east of the 13:00 MLT meridian. At larger clock angles the emissions appeared between 12:00 and 13:00 MLT. No significant 557.7-nm emissions were detected in the prenoon MLT sector. MHD simulations corroborate our scenario, showing that with the observed large dipole-tilt and IMF clock angles, merging sites develop near the front and eastern portions of the high-altitude cusp rim in the Northern Hemisphere and near the western part of the cusp rim in the Southern Hemisphere.

2005 ◽  
Vol 23 (4) ◽  
pp. 1405-1431 ◽  
Author(s):  
E. J. Bunce ◽  
S. W. H. Cowley ◽  
S. E. Milan

Abstract. Dayside UV emissions in Saturn's polar ionosphere have been suggested to be the first observational evidence of the kronian "cusp" (Gérard et al., 2004). The emission has two distinct states. The first is a bright arc-like feature located in the pre-noon sector, and the second is a more diffuse "spot" of aurora which lies poleward of the general location of the main auroral oval, which may be related to different upstream interplanetary magnetic field (IMF) orientations. Here we take up the suggestion that these emissions correspond to the cusp. However, direct precipitation of electrons in the cusp regions is not capable of producing significant UV aurora. We have therefore investigated the possibility that the observed UV emissions are associated with reconnection occurring at the dayside magnetopause, possibly pulsed, akin to flux transfer events seen at the Earth. We devise a conceptual model of pulsed reconnection at the low-latitude dayside magnetopause for the case of northwards IMF which will give rise to pulsed twin-vortical flows in the magnetosphere and ionosphere in the vicinity of the open-closed field-line boundary, and hence to bi-polar field-aligned currents centred in the vortical flows. During intervals of high-latitude lobe reconnection for southward IMF, we also expect to have pulsed twin-vortical flows and corresponding bi-polar field-aligned currents. The vortical flows in this case, however, are displaced poleward of the open-closed field line boundary, and are reversed in sense, such that the field-aligned currents are also reversed. For both cases of northward and southward IMF we have also for the first time included the effects associated with the IMF By effect. We also include the modulation introduced by the structured nature of the solar wind and IMF at Saturn's orbit by developing "slow" and "fast" flow models corresponding to intermediate and high strength IMF respectively. We then consider the conditions under which the plasma populations appropriate to either sub-solar reconnection or high-latitude lobe reconnection can carry the currents indicated. We have estimated the field-aligned voltages required, the resulting precipitating particle energy fluxes, and the consequent auroral output. Overall our model of pulsed reconnection under conditions of northwards and southwards IMF, and for varying orientations of IMF By, is found to produce a range of UV emission intensities and geometries which is in good agreement with the data presented by Gérard et al. (2004). The recent HST-Cassini solar wind campaign provides a unique opportunity to test the theoretical ideas presented here.


2005 ◽  
Vol 23 (4) ◽  
pp. 1207-1225 ◽  
Author(s):  
G. Provan ◽  
M. Lester ◽  
A. Grocott ◽  
S. W. H. Cowley

Abstract. On the 22 December 2002 the interplanetary magnetic field (IMF) was directed northwards for more than 12h. The Northern and Southern Hemisphere SuperDARN radars were used to study global high-latitude convection during this interval, complemented by data from the ACE and DMSP F13 spacecraft. The relative magnitudes of the IMF By and Bz components varied during this period. When the magnitude of the By component was comparable with or dominated the Bz component, signatures of simultaneous low-latitude and lobe reconnection were observed. Specifically two "standard" merging cells were observed in both hemispheres. In the Northern Hemisphere a high-latitude lobe cell was observed within the dusk merging cell, and there was also evidence of a narrow viscous cell located equatorward of this lobe cell. We observed the ionospheric signatures of flux transfer events (FTEs) in both the Northern and Southern Hemispheres, occurring with a periodicity of ~15min. In the Northern Hemisphere the FTEs were associated with a stepwise equatorward progression of the equatorward boundary of radar backscatter on the dayside. When the IMF Bz component was predominantly greater than the IMF By component, we observed a four-cell convection pattern in the Northern Hemisphere, with pulses of reverse reconnection and an associated stepwise poleward retraction of the equatorward boundary of radar backscatter occurring every ~25min. These observations are consistent with pulsed lobe reconnection occurring in both hemispheres, closing open flux and adding closed flux to the dayside magnetopause. So, during this northward IMF interval the location of the sites of reconnection between the IMF and the Earth's magnetosphere, and thus the form of reconnection process, varied with changing IMF conditions. However, the reconnection remained pulsed, with lobe-only reconnection having a significantly longer periodicity compared with simultaneous lobe and low-latitude reconnection.


2009 ◽  
Vol 27 (7) ◽  
pp. 2721-2737 ◽  
Author(s):  
H. T. Cai ◽  
I. W. McCrea ◽  
M. W. Dunlop ◽  
J. A. Davies ◽  
Y. V. Bogdanova ◽  
...  

Abstract. In recent years, a large number of papers have reported the response of the cusp to solar wind variations under conditions of northward or southward Interplanetary Magnetic Field (IMF) Z-component (BZ). These studies have shown the importance of both temporal and spatial factors in determining the extent and morphology of the cusp and the changes in its location, connected to variations in the reconnection geometry. Here we present a comparative study of the cusp, focusing on an interval characterised by a series of rapid reversals in the BZ-dominated IMF, based on observations from space-borne and ground-based instrumentation. During this interval, from 08:00 to 12:00 UT on 12 February 2003, the IMF BZ component underwent four reversals, remaining for around 30 min in each orientation. The Cluster spacecraft were, at the time, on an outbound trajectory through the Northern Hemisphere magnetosphere, whilst the mainland VHF and Svalbard (ESR) radars of the EISCAT facility were operating in support of the Cluster mission. Both Cluster and the EISCAT were, on occasion during the interval, observing the cusp region. The series of IMF reversals resulted in a sequence of poleward and equatorward motions of the cusp; consequently Cluster crossed the high-altitude cusp twice before finally exiting the dayside magnetopause, both times under conditions of northward IMF BZ. The first magnetospheric cusp encounter, by all four Cluster spacecraft, showed reverse ion dispersion typical of lobe reconnection; subsequently, Cluster spacecraft 1 and 3 (only) crossed the cusp for a second time. We suggest that, during this second cusp crossing, these two spacecraft were likely to have been on newly closed field lines, which were first reconnected (opened) at low latitudes and later reconnected again (re-closed) poleward of the northern cusp. At ionospheric altitudes, the latitudinal excursions of the cusp/cleft region in response to the series of the IMF polarity changes were clearly captured by both the ESR and the Pykkvibaer radar of the SuperDARN HF network. The Open-Closed field-line Boundary (OCB) inferred from the HF radar observations underwent latitudinal variations in response to the IMF polarity changes that are in accordance with those predicted by Newell et al. (1989). Furthermore, variations in the ionospheric parameters yielded by the EISCAT VHF and ESR radars are basically consistent with inferences drawn from the HF radar observations. We conclude that Cluster spacecraft 1 and 3 crossed the cusp for a second time as a result of the latitudinal migration of the cusp in response to the IMF polarity reversals; at that time, however, the cusp lay poleward of spacecraft 4. Snapshots of the cusp from two DMSP satellite passes provide further support for this interpretation.


2021 ◽  
Author(s):  
Lauri Holappa ◽  
Timo Asikainen ◽  
Kalevi Mursula

<p>The interaction of the solar wind with the Earth’s magnetic field produces geomagnetic activity, which is critically dependent on the orientation of the interplanetary magnetic field (IMF). Most solar wind coupling functions quantify this dependence on the IMF orientation with the so-called IMF clock angle in a way, which is symmetric with respect to the sign of the B<sub>y</sub> component. However, recent studies have shown that IMF B<sub>y</sub> is an additional, independent driver of high-latitude geomagnetic activity, leading to higher (weaker) geomagnetic activity in Northern Hemisphere (NH) winter for B<sub>y</sub> > 0 (B<sub>y</sub> < 0). For NH summer the dependence on the B<sub>y</sub> sign is reversed. We quantify the size of this explicit B<sub>y</sub>-effect with respect to the solar wind coupling function, both for northern and southern high-latitude geomagnetic activity. We show that for a given value of solar wind coupling function, geomagnetic activity is about 40% stronger for B<sub>y</sub> > 0 than for B<sub>y</sub> < 0 in NH winter. We also discuss recent advances in the physical understanding of the B<sub>y</sub>-effect. Our results highlight the importance of the IMF B<sub>y</sub>-component for space weather and must be taken into account in future space weather modeling.</p>


2006 ◽  
Vol 24 (3) ◽  
pp. 961-972 ◽  
Author(s):  
S. K. Morley ◽  
M. Lockwood

Abstract. Using a numerical implementation of the cowlock92 model of flow excitation in the magnetosphere-ionosphere (MI) system, we show that both an expanding (on a ~12-min timescale) and a quasi-instantaneous response in ionospheric convection to the onset of magnetopause reconnection can be accommodated by the Cowley-Lockwood conceptual framework. This model has a key feature of time dependence, necessarily considering the history of the coupled MI system. We show that a residual flow, driven by prior magnetopause reconnection, can produce a quasi-instantaneous global ionospheric convection response; perturbations from an equilibrium state may also be present from tail reconnection, which will superpose constructively to give a similar effect. On the other hand, when the MI system is relatively free of pre-existing flow, we can most clearly see the expanding nature of the response. As the open-closed field line boundary will frequently be in motion from such prior reconnection (both at the dayside magnetopause and in the cross-tail current sheet), it is expected that there will usually be some level of combined response to dayside reconnection.


2006 ◽  
Vol 24 (12) ◽  
pp. 3467-3480 ◽  
Author(s):  
M. Palmroth ◽  
T. V. Laitinen ◽  
T. I. Pulkkinen

Abstract. We use the global MHD model GUMICS-4 to investigate the energy and mass transfer through the magnetopause and towards the closed magnetic field as a response to the interplanetary magnetic field (IMF) clock angle θ=arctan (BY/BZ), IMF magnitude, and solar wind dynamic pressure. We find that the mass and energy transfer at the magnetopause are different both in spatial characteristics and in response to changes in the solar wind parameters. The energy transfer follows best the sin2 (θ/2) dependence, although there is more energy transfer after large energy input, and the reconnection line follows the IMF rotation with a delay. There is no clear clock angle dependence in the net mass transfer through the magnetopause, but the mass transfer through the dayside magnetopause and towards the closed field occurs preferably for northward IMF. The energy transfer occurs through areas at the magnetopause that are perpendicular to the subsolar reconnection line. In contrast, the mass transfer occurs consistently along the reconnection line, both through the magnetopause and towards the closed field. Both the energy and mass transfer are enhanced in response to increased solar wind dynamic pressure, while increasing the IMF magnitude does not affect the transfer quantities as much.


Author(s):  
Charles F. Kennel

Besides common sense, a number of results suggest that we can learn more about the slow “viscous” flow state by studying the magnetosphere during northward interplanetary field conditions. In particular, statistical studies have consistently identified a “residual” state of magnetospheric and ionospheric convection in northward field conditions. The integrated potential across the high latitudeionosphere does not drop below a certain resting value of about 20 kV even when the interplanetary field has been due north for several hours. There appears to be a similar residual component of geomagnetic activity that is independent of the direction of the interplanetary field (Scurry and Russell, 1991). Its correlation with the dynamic pressure of the solar wind strengthens our suspicion that it is related to viscosity. Will we be able to prove the convection in this residual state is driven by viscosity? Does the flow in northward field conditions resemble the underlying irregular flow state of the plasma sheet found at other times? Does the magnetosphere approach the teardrop configuration during prolonged intervals of northward interplanetary field? These are but a few of the questions that whet our interest in convection during northward field conditions. One does not arrive at the state of pure viscous convection immediately after the interplanetary field swings northward. Dungey (1963) was the first of many to argue that a northward magnetosheath field line will reconnect with an open tail lobe field line to create one that is connected to the ionosphere at one end and draped over the dayside magnetopause at the other. The sudden reconfiguration of stress will lead to sunward convection on the newly reconnected field lines. In the ionosphere, this superposes a “reverse” two-cell convection pattern in the central polar cap upon the two “direct” convection cells. If and when the draped reconnected field line finds a partner in the opposite tail lobe with which to reconnect, a newly closed field line will form. Dungey had imagined that the same magnetosheath field line would reconnect simultaneously with both tail lobes, in which case the rate at which open magnetic flux is closed depends upon the rate of tail-lobe reconnection.


2005 ◽  
Vol 23 (7) ◽  
pp. 2599-2604 ◽  
Author(s):  
G. Chisham ◽  
M. P. Freeman ◽  
T. Sotirelis ◽  
R. A. Greenwald

Abstract. Determining reliable proxies for the ionospheric signature of the open-closed field line boundary (OCB) is crucial for making accurate measurements of magnetic reconnection. This study compares the latitudes of spectral width boundaries (SWBs) measured by different beams of the Goose Bay radar of the Super Dual Auroral Radar Network (SuperDARN), with the latitudes of OCBs determined using the low-altitude Defense Meteorological Satellite Program (DMSP) spacecraft, in order to determine whether the accuracy of the SWB as a proxy for the ionospheric projection of the OCB depends on the line-of-sight direction of the radar beam. The latitudes of SWBs and OCBs were identified using automated algorithms applied to 5 years (1997–2001) of data measured in the 1000–1400 magnetic local time (MLT) range. Six different Goose Bay radar beams were used, ranging from those aligned in the geomagnetic meridional direction to those aligned in an almost zonal direction. The results show that the SWB is a good proxy for the OCB in near-meridionally-aligned beams but becomes progressively more unreliable for beams greater than 4 beams away from the meridional direction. We propose that SWBs are identified at latitudes lower than the OCB in the off-meridional beams due to the presence of high spectral width values that result from changes in the orientation of the beams with respect to the gradient in the large-scale ionospheric convection pattern. Keywords. Ionosphere (Instruments and techniques; Plasma convection) – Magnetospheric physics (Magnetopause, cusp and boundary layers)


2006 ◽  
Vol 24 (8) ◽  
pp. 2227-2242 ◽  
Author(s):  
H. Hu ◽  
T. K. Yeoman ◽  
M. Lester ◽  
R. Liu ◽  
H. Yang ◽  
...  

Abstract. The characteristics of dayside ionospheric convection are studied using Northern Hemispheric SuperDARN data and DMSP particle and flow observations when the interplanetary magnetic field (IMF) was strongly northward during 13:00–15:00 UT on 2 March 2002. Although IMF Bx was positive, which is believed to favour Southern Hemisphere high-latitude reconnection at equinox, a four-cell convection pattern was observed and lasted for more than 1.5 h in the Northern Hemisphere. The reconnection rate derived from an analysis of the Northern Hemisphere SuperDARN data illustrates that the high-latitude reconnection was quasi-periodic, with a period between 4–16 min. A sawtooth-like and reverse-dispersed ion signature was observed by DMSP-F14 in the sunward cusp convection at around 14:41 UT, confirming that the high-latitude reconnection was pulsed. Accompanying the pulsed reconnection, strong antisunward ionospheric flow bursts were observed in the post-noon LLBL region on closed field lines, propagating with the same speed as the plasma convection. DMSP flow data show that a similar flow pattern and particle precipitation occurred in the conjugate Southern Hemisphere.


2010 ◽  
Vol 28 (8) ◽  
pp. 1559-1570 ◽  
Author(s):  
E. S. Belenkaya ◽  
I. I. Alexeev ◽  
M. S. Blokhina ◽  
E. J. Bunce ◽  
S. W. H. Cowley ◽  
...  

Abstract. To gain better understanding of auroral processes in Saturn's magnetosphere, we compare ultraviolet (UV) auroral images obtained by the Hubble Space Telescope (HST) with the position of the open-closed field line boundary in the ionosphere calculated using a magnetic field model that employs Cassini measurements of the interplanetary magnetic field (IMF) as input. Following earlier related studies of pre-orbit insertion data from January 2004 when Cassini was located ~ 1300 Saturn radii away from the planet, here we investigate the interval 12–15 February 2008, when UV images of Saturn's southern dayside aurora were obtained by the HST while the Cassini spacecraft measured the IMF in the solar wind just upstream of the dayside bow shock. This configuration thus provides an opportunity, unique to date, to determine the IMF impinging on Saturn's magnetosphere during imaging observations, without the need to take account of extended and uncertain interplanetary propagation delays. The paraboloid model of Saturn's magnetosphere is then employed to calculate the magnetospheric magnetic field structure and ionospheric open-closed field line boundary for averaged IMF vectors that correspond, with appropriate response delays, to four HST images. We show that the IMF-dependent open field region calculated from the model agrees reasonably well with the area lying poleward of the UV emissions, thus supporting the view that the poleward boundary of Saturn's auroral oval in the dayside ionosphere lies adjacent to the open-closed field line boundary.


Sign in / Sign up

Export Citation Format

Share Document