scholarly journals Night-time sudden commencements observed by CHAMP and ground-based magnetometers and their relationship to solar wind parameters

2009 ◽  
Vol 27 (5) ◽  
pp. 1897-1907 ◽  
Author(s):  
H. Lühr ◽  
K. Schlegel ◽  
T. Araki ◽  
M. Rother ◽  
M. Förster

Abstract. We have studied 41 Sudden Commencements (SC) using simultaneous magnetic field data from the CHAMP satellite and ground stations of the years 2000–2007. They are all night time events, since the influence of ionospheric currents on the SC is supposed to be minimal at night. This is confirmed by our study for geomagnetic latitudes below ±40°. We further found that the onset times of the SC signature at satellite altitude and on the ground are the same within an uncertainty of 10 s and that the slopes of the corresponding magnetic field variation are very similar. For magnetic latitudes poleward of ±40° the amplitude of SCs increases both at the satellite and on ground, probably a consequence of field-aligned currents. CHAMP sometimes records small-scale magnetic variations different from the ground, which can be explained by local ionospheric currents. We also studied the relationship between the SC amplitude seen by CHAMP and the corresponding abrupt solar wind dynamic pressure change, using ACE data. Our results are compared with earlier studies using ground-based data and with theoretical expectations. It turns out that the induction effect in the Earth is quite small at low latitudes. Another important result is that the magnetic signature near the Earth is over-proportionally reduced for weak SC events. A discussion of accuracy and the uncertainty of our results completes the paper.

2021 ◽  
Author(s):  
Jinyan Zhao ◽  
Quanqi Shi ◽  
Anmin Tian ◽  
Ruilong Guo ◽  
Xiao-Chen Shen

<p>A solar wind dynamic pressure increase/decrease leads to the compression/expansion of the Earth’s magnetosphere. In response, field-aligned currents, which are carried by precipitating or escaping plasma particles, are generated in the magnetosphere and in lead to variations in the auroral intensity. In this study, we investigate magnetospheric and ionospheric responses (including magnetospheric plasma vortex, ionospheric currents and aurorae) to a sudden decrease in solar wind dynamic pressure (SW P<sub>dyn</sub>), which is critical for further understanding of the solar wind-magnetosphere-ionosphere coupling. We focused on a SW P<sub>dyn</sub> decrease event that monitored by OMNI. A counter-clockwise plasma vortex was generated in the dusk side magnetosphere uncovered by using MHD simulation method and a clockwise equivalent ionospheric currents (EIC) vortex was generated in the dusk side ionosphere within about ten minutes after the pressure pulse arrival. Simultaneously, the observation results of Spherical Elementary Currents (SECs) showed that the EIC vortex region is dominated by downward field-aligned currents and the ground-based All-Sky Imager (ASI) observations in the vicinity of this EIC vortex showed that the aurorae diminished. These observations are consistent with the scenario proposed by Shi et al. (2014) that flow vortices in the magnetosphere generated by SW P<sub>dyn</sub> sudden decrease carry downward field-aligned currents into the dusk side ionosphere, generating ionospheric current vortex and thereby modulating auroral activity on the dusk side.</p>


2021 ◽  
Author(s):  
Harald Kucharek ◽  
Imogen Gingell ◽  
Steven Schwartz ◽  
Charles Farrugia ◽  
Karlheinz Trattner

<p>While the Earth’s bow shock marks the location at which the solar wind is thermalized, recent publications provided evidence that filamentary structures such as reconnecting current sheets at the shock ramp region may participate in the thermalization process.  Small scale filamentary structures are distinct features that are abundant at the shock and inside the magnetosheath. These structures are not limited to current sheets but include electric and magnetic field enhancements. They may consist of a single or multiple filaments.  They originate from energy dissipation at and downstream of the bow shock, in particular the parallel bow shock. </p><p>We have studied several crossings of the magnetosheath made by the MMS spacecraft, characterising and quantifying the occurrence and consequences of current sheets and field enhancements in terms of local plasma heating and ion acceleration far downstream of the shock. These observations suggest that a combination of current sheet formation, and electric field and magnetic field gradients can contribute to local downstream ion acceleration, and heating. The associated turbulence is likely a consequence of solar wind input parameters. These observations provide evidence that under certain plasma conditions these filamentary structures can play a significant role in thermalizing of the magnetosheath plasma as it propagates further downstream toward the magnetopause, thus augmenting the effect due to the bow shock itself.</p>


2005 ◽  
Vol 23 (2) ◽  
pp. 609-624 ◽  
Author(s):  
K. E. J. Huttunen ◽  
J. Slavin ◽  
M. Collier ◽  
H. E. J. Koskinen ◽  
A. Szabo ◽  
...  

Abstract. Sudden impulses (SI) in the tail lobe magnetic field associated with solar wind pressure enhancements are investigated using measurements from Cluster. The magnetic field components during the SIs change in a manner consistent with the assumption that an antisunward moving lateral pressure enhancement compresses the magnetotail axisymmetrically. We found that the maximum variance SI unit vectors were nearly aligned with the associated interplanetary shock normals. For two of the tail lobe SI events during which Cluster was located close to the tail boundary, Cluster observed the inward moving magnetopause. During both events, the spacecraft location changed from the lobe to the magnetospheric boundary layer. During the event on 6 November 2001 the magnetopause was compressed past Cluster. We applied the 2-D Cartesian model developed by collier98 in which a vacuum uniform tail lobe magnetic field is compressed by a step-like pressure increase. The model underestimates the compression of the magnetic field, but it fits the magnetic field maximum variance component well. For events for which we could determine the shock normal orientation, the differences between the observed and calculated shock propagation times from the location of WIND/Geotail to the location of Cluster were small. The propagation speeds of the SIs between the Cluster spacecraft were comparable to the solar wind speed. Our results suggest that the observed tail lobe SIs are due to lateral increases in solar wind dynamic pressure outside the magnetotail boundary.


2003 ◽  
Vol 21 (9) ◽  
pp. 1931-1938 ◽  
Author(s):  
B. V. Kozelov ◽  
T. V. Kozelova

Abstract. We propose a cellular automata model (CAM) to describe the substorm activity of the magnetospheric-ionospheric system. The state of each cell in the model is described by two numbers that correspond to the energy content in a region of the current sheet in the magnetospheric tail and to the conductivity of the ionospheric domain that is magnetically connected with this region. The driving force of the system is supposed to be provided by the solar wind that is convected along the two boundaries of the system. The energy flux inside is ensured by the penetration of the energy from the solar wind into the array of cells (magnetospheric tail) with a finite velocity. The third boundary (near to the Earth) is closed and the fourth boundary is opened, thereby modeling the flux far away from the tail. The energy dissipation in the system is quite similar to other CAM models, when the energy in a particular cell exceeds some pre-defined threshold, and the part of the energy excess is redistributed between the neighbouring cells. The second number attributed to each cell mimics ionospheric conductivity that can allow for a part of the energy to be shed on field-aligned currents. The feedback between "ionosphere" and "magnetospheric tail" is provided by the change in a part of the energy, which is redistributed in the tail when the threshold is surpassed. The control parameter of the model is the z-component of the interplanetary magnetic field (Bz IMF), "frozen" into the solar wind. To study the internal dynamics of the system at the beginning, this control parameter is taken to be constant. The dynamics of the system undergoes several bifurcations, when the constant varies from - 0.6 to - 6.0. The Bz IMF input results in the periodic transients (activation regions) and the inter-transient period decreases with the decrease of Bz. At the same time the onset of activations in the array shifts towards the "Earth". When the modulus of the Bz IMF exceeds some threshold value, the transition takes place from periodic to chaotic dynamics. In the second part of the work we have chosen as the source the real values of the z-component of the interplanetary magnetic field taken from satellite observations. We have shown that in this case the statistical properties of the transients reproduce the characteristic features observed by Lui et al. (2000).Key words. Magnetospheric physics (magnetosphere-ionosphere interactions) – Space plasma physics (nonlinear phenomena)


2015 ◽  
Vol 1 (3) ◽  
pp. 11-20 ◽  
Author(s):  
Надежда Куражковская ◽  
Nadezhda Kurazhkovskaya ◽  
Борис Клайн ◽  
Boris Klain

We present the results of investigation of the influence of geomagnetic activity, solar wind and parameters of the interplanetary magnetic field (IMF) on properties of the intermittency of midlatitude burst series of Pi2 geomagnetic pulsations observed during magnetospheric substorms on the nightside (substorm Pi2) and in the absence of these phenomena (nonsub-storm Pi2). We considered the index α as a main characteristic of intermittency of substorm and nonsubstorm Pi2 pulsations. The index α characterizes the slope of the cumulative distribution function of Pi2 burst amplitudes. The study indicated that the value and dynamics of the index α varies depending on the planetary geomagnetic activity, auroral activity and the intensity of magnetospheric ring currents. In addition, the forms of dependences of the index α on the density n, velocity V, dynamic pressure Pd of the solar wind and IMF Bx-component are different. The behavior of the index α depending on the module of B, By- and Bz-components is similar. We found some critical values of V, Pd, B, By- and Bz-components, after reaching of which the turbulence of the magnetotail plasma during substorm development is decreased. The revealed patterns of the intermittency of Pi2 pulsations can be used for qualitative assessment of turbulence level in the magnetotail plasma depending on changing interplanetary conditions.


2021 ◽  
Author(s):  
Jacobo Varela Rodriguez ◽  
Sacha A. Brun ◽  
Antoine Strugarek ◽  
Victor Réville ◽  
Filippo Pantellini ◽  
...  

<p><span>The aim of the study is to analyze the response of the Earth magnetosphere for various space weather conditions and model the effect of interplanetary coronal mass ejections. The magnetopause stand off distance, open-closed field lines boundary and plasma flows towards the planet surface are investigated. We use the MHD code PLUTO in spherical coordinates to perform a parametric study regarding the dynamic pressure and temperature of the solar wind as well as the interplanetary magnetic field intensity and orientation. The range of the parameters analyzed extends from regular to extreme space weather conditions consistent with coronal mass ejections at the Earth orbit. The direct precipitation of the solar wind on the Earth day side at equatorial latitudes is extremely unlikely even during super coronal mass ejections. For example, the SW precipitation towards the Earth surface for a IMF purely oriented in the Southward direction requires a IMF intensity around 1000 nT and the SW dynamic pressure above 350 nPa, space weather conditions well above super-ICMEs. The analysis is extended to previous stages of the solar evolution considering the rotation tracks from Carolan (2019). The simulations performed indicate an efficient shielding of the Earth surface 1100 Myr after the Sun enters in the main sequence. On the other hand, for early evolution phases along the Sun main sequence once the Sun rotation rate was at least 5 times faster (< 440 Myr), the Earth surface was directly exposed to the solar wind during coronal mass ejections (assuming today´s Earth magnetic field). Regarding the satellites orbiting the Earth, Southward and Ecliptic IMF orientations are particularly adverse for Geosynchronous satellites, partially exposed to the SW if the SW dynamic pressure is 8-14 nPa and the IMF intensity 10 nT. On the other hand, Medium orbit satellites at 20000 km are directly exposed to the SW during Common ICME if the IMF orientation is Southward and during Strong ICME if the IMF orientation is Earth-Sun or Ecliptic. The same way, Medium orbit satellites at 10000 km are directly exposed to the SW if a Super ICME with Southward IMF orientation impacts the Earth.</span></p><p>This work was supported by the project 2019-T1/AMB-13648 founded by the Comunidad de Madrid, grants ERC WholeSun, Exoplanets A and PNP. We extend our thanks to CNES for Solar Orbiter, PLATO and Meteo Space science support and to INSU/PNST for their financial support.</p>


2021 ◽  
Author(s):  
Andrey Samsonov ◽  
Jennifer A. Carter ◽  
Graziella Branduardi-Raymont ◽  
Steven Sembay

<p>On 16-17 June 2012, an interplanetary coronal mass ejection with an extremely high solar wind density (~100 cm<sup>-3</sup>) and mostly strong northward (or eastward) interplanetary magnetic field (IMF) interacted with the Earth’s magnetosphere. We have simulated this event using global MHD models. We study the magnetospheric response to two solar wind discontinuities. The first is characterized by a fast drop of the solar wind dynamic pressure resulting in rapid magnetospheric expansion. The second is a northward IMF turning which causes reconfiguration of the magnetospheric-ionospheric currents. We discuss variations of the magnetopause position and locations of the magnetopause reconnection in response to the solar wind variations. In the second part of our presentation, we present simulation results for the forthcoming SMILE (Solar wind Magnetosphere Ionosphere Link Explorer) mission. SMILE is scheduled for launch in 2024. We produce two-dimensional images that derive from the MHD results of the expected X-ray emission as observed by the SMILE Soft X-ray Imager (SXI). We discuss how SMILE observations may help to study events like the one presented in this work.</p>


2021 ◽  
Vol 922 (2) ◽  
pp. 188
Author(s):  
L.-L. Zhao ◽  
G. P. Zank ◽  
J. S. He ◽  
D. Telloni ◽  
L. Adhikari ◽  
...  

Abstract Parker Solar Probe (PSP) observed predominately Alfvénic fluctuations in the solar wind near the Sun where the magnetic field tends to be radially aligned. In this paper, two magnetic-field-aligned solar wind flow intervals during PSP’s first two orbits are analyzed. Observations of these intervals indicate strong signatures of parallel/antiparallel-propagating waves. We utilize multiple analysis techniques to extract the properties of the observed waves in both magnetohydrodynamic (MHD) and kinetic scales. At the MHD scale, outward-propagating Alfvén waves dominate both intervals, and outward-propagating fast magnetosonic waves present the second-largest contribution in the spectral energy density. At kinetic scales, we identify the circularly polarized plasma waves propagating near the proton gyrofrequency in both intervals. However, the sense of magnetic polarization in the spacecraft frame is observed to be opposite in the two intervals, although they both possess a sunward background magnetic field. The ion-scale plasma wave observed in the first interval can be either an inward-propagating ion cyclotron wave (ICW) or an outward-propagating fast-mode/whistler wave in the plasma frame, while in the second interval it can be explained as an outward ICW or inward fast-mode/whistler wave. The identification of the exact kinetic wave mode is more difficult to confirm owing to the limited plasma data resolution. The presence of ion-scale waves near the Sun suggests that ion cyclotron resonance may be one of the ubiquitous kinetic physical processes associated with small-scale magnetic fluctuations and kinetic instabilities in the inner heliosphere.


2010 ◽  
Vol 28 (2) ◽  
pp. 515-530 ◽  
Author(s):  
H. Korth ◽  
B. J. Anderson ◽  
C. L. Waters

Abstract. The spatial distributions of large-scale field-aligned Birkeland currents have been derived using magnetic field data obtained from the Iridium constellation of satellites from February 1999 to December 2007. From this database, we selected intervals that had at least 45% overlap in the large-scale currents between successive hours. The consistency in the current distributions is taken to indicate stability of the large-scale magnetosphere–ionosphere system to within the spatial and temporal resolution of the Iridium observations. The resulting data set of about 1500 two-hour intervals (4% of the data) was sorted first by the interplanetary magnetic field (IMF) GSM clock angle (arctan(By/Bz)) since this governs the spatial morphology of the currents. The Birkeland current densities were then corrected for variations in EUV-produced ionospheric conductance by normalizing the current densities to those occurring for 0° dipole tilt. To determine the dependence of the currents on other solar wind variables for a given IMF clock angle, the data were then sorted sequentially by the following parameters: the solar wind electric field in the plane normal to the Earth–Sun line, Eyz; the solar wind ram pressure; and the solar wind Alfvén Mach number. The solar wind electric field is the dominant factor determining the Birkeland current intensities. The currents shift toward noon and expand equatorward with increasing solar wind electric field. The total current increases by 0.8 MA per mV m−1 increase in Eyz for southward IMF, while for northward IMF it is nearly independent of the electric field, increasing by only 0.1 MA per mV m−1 increase in Eyz. The dependence on solar wind pressure is comparatively modest. After correcting for the solar dynamo dependencies in intensity and distribution, the total current intensity increases with solar wind dynamic pressure by 0.4 MA/nPa for southward IMF. Normalizing the Birkeland current densities to both the median solar wind electric field and dynamic pressure effects, we find no significant dependence of the Birkeland currents on solar wind Alfvén Mach number.


Sign in / Sign up

Export Citation Format

Share Document