scholarly journals On the nonlinear shaping mechanism for gravity wave spectrum in the atmosphere

2009 ◽  
Vol 27 (11) ◽  
pp. 4105-4124 ◽  
Author(s):  
I. P. Chunchuzov

Abstract. The nonlinear mechanism of shaping of a high vertical wave number spectral tail in the field of a few discrete internal gravity waves in the atmosphere is studied in this paper. The effects of advection of fluid parcels by interacting gravity waves are taken strictly into account by calculating wave field in Lagrangian variables, and performing a variable transformation from Lagrangian to Eulerian frame. The vertical profiles and vertical wave number spectra of the Eulerian displacement field are obtained for both the case of resonant and non-resonant wave-wave interactions. The evolution of these spectra with growing parameter of nonlinearity of the internal wave field is studied and compared to that of a broad band spectrum of gravity waves with randomly independent amplitudes and phases. The calculated vertical wave number spectra of the vertical displacements or relative temperature fluctuations are found to be consistent with the observed spectra in the middle atmosphere.

2020 ◽  
Vol 77 (10) ◽  
pp. 3601-3618
Author(s):  
B. Quinn ◽  
C. Eden ◽  
D. Olbers

AbstractThe model Internal Wave Dissipation, Energy and Mixing (IDEMIX) presents a novel way of parameterizing internal gravity waves in the atmosphere. IDEMIX is based on the spectral energy balance of the wave field and has previously been successfully developed as a model for diapycnal diffusivity, induced by internal gravity wave breaking in oceans. Applied here for the first time to atmospheric gravity waves, integration of the energy balance equation for a continuous wave field of a given spectrum, results in prognostic equations for the energy density of eastward and westward gravity waves. It includes their interaction with the mean flow, allowing for an evolving and local description of momentum flux and gravity wave drag. A saturation mechanism maintains the wave field within convective stability limits, and a closure for critical-layer effects controls how much wave flux propagates from the troposphere into the middle atmosphere. Offline comparisons to a traditional parameterization reveal increases in the wave momentum flux in the middle atmosphere due to the mean-flow interaction, resulting in a greater gravity wave drag at lower altitudes. Preliminary validation against observational data show good agreement with momentum fluxes.


2007 ◽  
Vol 64 (5) ◽  
pp. 1509-1529 ◽  
Author(s):  
Nikolaos A. Bakas ◽  
Petros J. Ioannou

Abstract In this paper, the emission of internal gravity waves from a local westerly shear layer is studied. Thermal and/or vorticity forcing of the shear layer with a wide range of frequencies and scales can lead to strong emission of gravity waves in the region exterior to the shear layer. The shear flow not only passively filters and refracts the emitted wave spectrum, but also actively participates in the gravity wave emission in conjunction with the distributed forcing. This interaction leads to enhanced radiated momentum fluxes but more importantly to enhanced gravity wave energy fluxes. This enhanced emission power can be traced to the nonnormal growth of the perturbations in the shear region, that is, to the transfer of the kinetic energy of the mean shear flow to the emitted gravity waves. The emitted wave energy flux increases with shear and can become as large as 30 times greater than the corresponding flux emitted in the absence of a localized shear region. Waves that have horizontal wavelengths larger than the depth of the shear layer radiate easterly momentum away, whereas the shorter waves are trapped in the shear region and deposit their momentum at their critical levels. The observed spectrum, as well as the physical mechanisms influencing the spectrum such as wave interference and Doppler shifting effects, is discussed. While for large Richardson numbers there is equipartition of momentum among a wide range of frequencies, most of the energy is found to be carried by waves having vertical wavelengths in a narrow band around the value of twice the depth of the region. It is shown that the waves that are emitted from the shear region have vertical wavelengths of the size of the shear region.


2021 ◽  
Author(s):  
Wolfgang Woiwode ◽  
Andreas Dörnbrack ◽  
Felix Friedl-Vallon ◽  
Markus Geldenhuys ◽  
Andreas Giez ◽  
...  

<p>The combination of the airborne GLORIA (Gimballed Limb Observer for Radiance Imaging of the Atmosphere) and ALIMA (Airborne LIdar for Middle Atmosphere research) instruments allows for probing of temperature perturbations associated with gravity waves within the range from the troposphere up to the mesosphere. Both instruments were part of the scientific payload of the German HALO (High Altitude and LOng Range Research Aircraft) during the SouthTRAC-GW (Southern hemisphere Transport, Dynamics, and Chemistry - Gravity Waves) mission, aiming at probing gravity waves in the hotspot region around South America and the Antarctic peninsula. For the research flight on 16 September 2019, complex temperature perturbations attributed to internal gravity waves were forecasted well above the Atlantic to the south-west of Buenos Aires, Argentina. The forecasted temperature perturbations were located in a region where the polar front jet stream met with the subtropical jet, with the polar night jet above. We present temperature perturbations observed by GLORIA and ALIMA during the discussed flight and compare the data with ECMWF IFS (European Centre for Medium-Range Weather Forecasts – Integrated Forecasting System) high-resolution deterministic forecasts, aiming at validating the IFS data and identifying sources of the observed wave patterns.</p>


1969 ◽  
Vol 36 (4) ◽  
pp. 785-803 ◽  
Author(s):  
Francis P. Bretherton

A train of internal gravity waves in a stratified liquid exerts a stress on the liquid and induces changes in the mean motion of second order in the wave amplitude. In those circumstances in which the concept of a slowly varying quasi-sinusoidal wave train is consistent, the mean velocity is almost horizontal and is determined to a first approximation irrespective of the vertical forces exerted by the waves. The sum of the mean flow kinetic energy and the wave energy is then conserved. The circulation around a horizontal circuit moving with the mean velocity is increased in the presence of waves according to a simple formula. The flow pattern is obtained around two- and three-dimensional wave packets propagating into a liquid at rest and the results are generalized for any basic state of motion in which the internal Froude number is small. Momentum can be associated with a wave packet equal to the horizontal wave-number times the wave energy divided by the intrinsic frequency.


2017 ◽  
Author(s):  
Petr Pisoft ◽  
Petr Sacha ◽  
Jiri Miksovsky ◽  
Peter Huszar ◽  
Barbara Scherllin-Pirscher ◽  
...  

Abstract. We revise selected findings regarding the utilization of Global Positioning System radio occultation (GPS RO) density profiles for the analysis of internal gravity waves (IGW), introduced by Sacha et al. (2014). Using various GPS RO datasets, we show that the previously detected differences in the IGW spectra between dry temperature and density profiles are found only in the one specific data version that was used for the original study mentioned above. The differences between temperature and density perturbations do not have any physical origin and there is no information loss of IGW activity due to the GPS RO retrieval. We investigate the previously discussed question of the temperature perturbations character when utilizing GPS RO dry temperature profiles, derived by integration of the hydrostatic balance. Using radiosonde profiles as proxy for GPS RO, we provide strong evidence that the differences in IGW perturbations between the real and retrieved temperature profiles (which are based on the assumption of hydrostatic balance) include a significant nonhydrostatic component that is present sporadically and might be either positive or negative. The detected differences in related spectra of IGW temperature perturbations are found to be mostly about ±10 %. The paper also presents a detailed study on the utilization of GPS RO density profiles for the characterization of the wave field stability. We have analyzed selected stability parameters derived from the density profiles together with a study of the vertical rotation of the wind direction. Regarding the Northern Hemisphere the results point to the western border of the Aleutian High where potential IGW breaking is detected. These findings are also supported by an analysis of temperature and wind velocity profiles. Our results confirm advantages of the utilization of the density profiles for IGW analysis.


2018 ◽  
Vol 18 (21) ◽  
pp. 15725-15742 ◽  
Author(s):  
Friederike Lilienthal ◽  
Christoph Jacobi ◽  
Christoph Geißler

Abstract. Using a nonlinear mechanistic global circulation model we analyze the migrating terdiurnal tide in the middle atmosphere with respect to its possible forcing mechanisms, i.e., the absorption of solar radiation in the water vapor and ozone band, nonlinear tidal interactions, and gravity wave–tide interactions. In comparison to the forcing mechanisms of diurnal and semidiurnal tides, these terdiurnal forcings are less well understood and there are contradictory opinions about their respective relevance. In our simulations we remove the wave number 3 pattern for each forcing individually and analyze the remaining tidal wind and temperature fields. We find that the direct solar forcing is dominant and explains most of the migrating terdiurnal tide's amplitude. Nonlinear interactions due to other tides or gravity waves are most important during local winter. Further analyses show that the nonlinear forcings are locally counteracting the solar forcing due to destructive interferences. Therefore, tidal amplitudes can become even larger for simulations with removed nonlinear forcings.


2021 ◽  
Author(s):  
Natalie Kaifler ◽  
Bernd Kaifler ◽  
Andreas Dörnbrack ◽  
Sonja Gisinger ◽  
Tyler Mixa ◽  
...  

<p>During the SOUTHTRAC-GW (Southern hemisphere Transport, Dynamics and Chemistry – Gravity Waves) field campaign, gravity waves above the Southern Andes mountains, the Drake passage and the Antarctic Peninsula were probed with airborne instruments onboard the HALO research aircraft. The Airborne Lidar for Middle Atmosphere research (ALIMA) detected particularly strong mountain waves in excess of 25 K amplitude in cross-mountain legs above the Southern Andes of research flight ST08 on 12 September 2019. The mountain waves propagated well into the mesosphere up to 65 km altitude with possible generation of smaller-scale secondary waves during wave breaking above 65 km. A superposition of mountain waves with horizontal wavelengths in the range 15-200 km and vertical wavelengths 7-24 km dominated the wave field between 18 and 65 km altitude. Vertical wavelengths predicted by the hydrostatic equation and horizontal wind from the European Center for Medium-Range Weather Forecasts’ Integrated Forecasting System are in good agreement with observed vertical wavelengths. We apply wavelet analysis to the measured temperature field along the flight track in order to identify and separate dominant scales, and estimate their relative contributions to the total gravity wave momentum flux as well as the local and zonal-mean gravity wave drag. Furthermore, we compare our observations to results obtained by Fourier ray analysis of the terrain of the Southern Andes. The Fourier model allows the investigation of the 3d-wave field and trapped waves which are not well sampled by the ALIMA instrument because of the relative alignment between the wave fronts and the flight track. These sampling biases are quantified from virtual flights through the model domain at multiple angles and taken into account in the estimation of the total momentum flux derived from ALIMA observations. The combination of high-resolution observations and model data reveals the significance of this and similar mountain wave events in the Southern Andes region for the atmospheric dynamics at ~60° S.</p>


2013 ◽  
Vol 43 (8) ◽  
pp. 1759-1779 ◽  
Author(s):  
Dirk Olbers ◽  
Carsten Eden

Abstract An energetically consistent model for the diapycnal diffusivity induced by breaking of internal gravity waves is proposed and tested in local and global settings. The model [Internal Wave Dissipation, Energy and Mixing (IDEMIX)] is based on the spectral radiation balance of the wave field, reduced by integration over the wavenumber space, which yields a set of balances for energy density variables in physical space. A further simplification results in a single partial differential equation for the total energy density of the wave field. The flux of energy to high vertical wavenumbers is parameterized by a functional derived from the wave–wave scattering integral of resonant wave triad interactions, which also forms the basis for estimates of dissipation rates and related diffusivities of ADCP and hydrography fine-structure data. In the current version of IDEMIX, the wave energy is forced by wind-driven near-inertial motions and baroclinic tides, radiating waves from the respective boundary layers at the surface and the bottom into the ocean interior. The model predicts plausible magnitudes and three-dimensional structures of internal wave energy, dissipation rates, and diapycnal diffusivities in rough agreement to observational estimates. IDEMIX is ready for use as a mixing module in ocean circulation models and can be extended with more spectral components.


Sign in / Sign up

Export Citation Format

Share Document