scholarly journals Supermagnetosonic subsolar magnetosheath jets and their effects: from the solar wind to the ionospheric convection

2012 ◽  
Vol 30 (1) ◽  
pp. 33-48 ◽  
Author(s):  
H. Hietala ◽  
N. Partamies ◽  
T. V. Laitinen ◽  
L. B. N. Clausen ◽  
G. Facskó ◽  
...  

Abstract. It has recently been proposed that ripples inherent to the bow shock during radial interplanetary magnetic field (IMF) may produce local high speed flows in the magnetosheath. These jets can have a dynamic pressure much larger than the dynamic pressure of the solar wind. On 17 March 2007, several jets of this type were observed by the Cluster spacecraft. We study in detail these jets and their effects on the magnetopause, the magnetosphere, and the ionospheric convection. We find that (1) the jets could have a scale size of up to a few RE but less than ~6 RE transverse to the XGSE axis; (2) the jets caused significant local magnetopause perturbations due to their high dynamic pressure; (3) during the period when the jets were observed, irregular pulsations at the geostationary orbit and localised flow enhancements in the ionosphere were detected. We suggest that these inner magnetospheric phenomena were caused by the magnetosheath jets.

2020 ◽  
Author(s):  
Laura Vuorinen ◽  
Heli Hietala ◽  
Ferdinand Plaschke

<p>Downstream of the Earth's quasi-parallel shock, transients with higher earthward velocities than the surrounding magnetosheath plasma are often observed. These transients have been named magnetosheath jets. Due to their high dynamic pressure, jets can cause multiple types of effects when colliding into the magnetopause. Recently, jets have been linked to triggering magnetopause reconnection in case studies by Hietala et al. (2018) and Nykyri et al. (2019). Jets have been proposed to affect magnetopause reconnection in multiple ways. Jets can compress the magnetopause and make it thin enough for reconnection to occur. Jets could also affect the magnetic shear either by indenting the magnetopause or via the magnetic field of the jets themselves. Here we want to study whether the magnetic field of jets can statistically affect magnetopause reconnection. In particular, we are interested in whether jets could enhance reconnection during more quiet northward IMF conditions.</p><p>We statistically study the magnetic field within jets in the subsolar magnetosheath using measurements from the five Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft and OMNI solar wind data from 2008–2011. We investigate jets next to the magnetopause and find that the magnetic field within jets is statistically different compared to the non-jet magnetosheath. Our results suggest that during southward IMF, the non-jet magnetosheath magnetic field itself has more variation than the jets. This suggests that jets should have no statistical, neither enhancing nor suppressing, effect on reconnection during southward IMF. However, during northward IMF, the magnetic field within jets is statistically favorable for enhancing magnetic reconnection at the subsolar magnetopause as around 70 % of these jets exhibit southward fields close to the magnetopause.</p>


2015 ◽  
Vol 1 (3) ◽  
pp. 11-20 ◽  
Author(s):  
Надежда Куражковская ◽  
Nadezhda Kurazhkovskaya ◽  
Борис Клайн ◽  
Boris Klain

We present the results of investigation of the influence of geomagnetic activity, solar wind and parameters of the interplanetary magnetic field (IMF) on properties of the intermittency of midlatitude burst series of Pi2 geomagnetic pulsations observed during magnetospheric substorms on the nightside (substorm Pi2) and in the absence of these phenomena (nonsub-storm Pi2). We considered the index α as a main characteristic of intermittency of substorm and nonsubstorm Pi2 pulsations. The index α characterizes the slope of the cumulative distribution function of Pi2 burst amplitudes. The study indicated that the value and dynamics of the index α varies depending on the planetary geomagnetic activity, auroral activity and the intensity of magnetospheric ring currents. In addition, the forms of dependences of the index α on the density n, velocity V, dynamic pressure Pd of the solar wind and IMF Bx-component are different. The behavior of the index α depending on the module of B, By- and Bz-components is similar. We found some critical values of V, Pd, B, By- and Bz-components, after reaching of which the turbulence of the magnetotail plasma during substorm development is decreased. The revealed patterns of the intermittency of Pi2 pulsations can be used for qualitative assessment of turbulence level in the magnetotail plasma depending on changing interplanetary conditions.


2011 ◽  
Vol 29 (1) ◽  
pp. 31-46 ◽  
Author(s):  
S. Baraka ◽  
L. Ben-Jaffel

Abstract. We present a follow up study of the sensitivity of the Earth's magnetosphere to solar wind activity using a particles-in-cell model (Baraka and Ben Jaffel, 2007), but here during northward Interplanetary Magnetic Field (IMF). The formation of the magnetospheric cavity and its elongation around the planet is obtained with the classical structure of a magnetosphere with parallel lobes. An impulsive disturbance is then applied to the system by changing the bulk velocity of the solar wind to simulate a decrease in the solar wind dynamic pressure followed by its recovery. In response to the imposed drop in the solar wind velocity, a gap (abrupt depression) in the incoming solar wind plasma appears moving toward the Earth. The gap's size is a ~15 RE and is comparable to the sizes previously obtained for both Bz<0 and Bz=0. During the initial phase of the disturbance along the x-axis, the dayside magnetopause (MP) expands slower than the previous cases of IMF orientations as a result of the abrupt depression. The size of the MP expands nonlinearly due to strengthening of its outer boundary by the northward IMF. Also, during the initial 100 Δt, the MP shrank down from 13.3 RE to ~9.2 RE before it started expanding, a phenomenon that was also observed for southern IMF conditions but not during the no IMF case. As soon as they felt the solar wind depression, cusps widened at high altitude while dragged in an upright position. For the field's topology, the reconnection between magnetospheric and magnetosheath fields is clearly observed in both the northward and southward cusps areas. Also, the tail region in the northward IMF condition is more confined, in contrast to the fishtail-shape obtained in the southward IMF case. An X-point is formed in the tail at ~110 RE compared to ~103 RE and ~80 RE for Bz=0 and Bz<0, respectively. Our findings are consistent with existing reports from many space observatories (Cluster, Geotail, Themis, etc.) for which predictions are proposed to test furthermore our simulation technique.


2006 ◽  
Vol 24 (11) ◽  
pp. 3011-3026 ◽  
Author(s):  
F. Pitout ◽  
C. P. Escoubet ◽  
B. Klecker ◽  
H. Rème

Abstract. We present a statistical study of four years of Cluster crossings of the mid-altitude cusp. In this first part of the study, we start by introducing the method we have used a) to define the cusp properties, b) to sort the interplanetary magnetic field (IMF) conditions or behaviors into classes, c) to determine the proper time delay between the solar wind monitors and Cluster. Out of the 920 passes that we have analyzed, only 261 fulfill our criteria and are considered as cusp crossings. We look at the size, location and dynamics of the mid-altitude cusp under various IMF orientations and solar wind conditions. For southward IMF, Bz rules the latitudinal dynamics, whereas By governs the zonal dynamics, confirming previous works. We show that when |By| is larger than |Bz|, the cusp widens and its location decorrelates from By. We interpret this feature in terms of component reconnection occurring under By-dominated IMF. For northward IMF, we demonstrate that the location of the cusp depends primarily upon the solar wind dynamic pressure and upon the Y-component of the IMF. Also, the multipoint capability of Cluster allows us to conclude that the cusp needs typically more than ~20 min to fully adjust its location and size in response to changes in external conditions, and its speed is correlated to variations in the amplitude of IMF-Bz. Indeed, the velocity in °ILAT/min of the cusp appears to be proportional to the variation in Bz in nT: Vcusp=0.024 ΔBz. Finally, we observe differences in the behavior of the cusp in the two hemispheres. Those differences suggest that the cusp moves and widens more freely in the summer hemisphere.


2004 ◽  
Vol 22 (8) ◽  
pp. 2989-2996 ◽  
Author(s):  
Y. P. Maltsev ◽  
A. A. Ostapenko

Abstract. Based on magnetic data, spatial distribution of the westward ring current flowing at |z|<3 RE has been found under five levels of Dst, five levels of the interplanetary magnetic field (IMF) z component, and five levels of the solar wind dynamic pressure Psw. The maximum of the current is located near midnight at distances 5 to 7 RE. The magnitude of the nightside and dayside parts of the westward current at distances from 4 to 9 RE can be approximated as Inight=1.75-0.041 Dst, Inoon=0.22-0.013 Dst, where the current is in MA. The relation of the nightside current to the solar wind parameters can be expressed as Inight=1.45-0.20 Bs IMF + 0.32 Psw, where BsIMF is the IMF southward component. The dayside ring current poorly correlates with the solar wind parameters.


2011 ◽  
Vol 29 (9) ◽  
pp. 1549-1569 ◽  
Author(s):  
M. Volwerk ◽  
J. Berchem ◽  
Y. V. Bogdanova ◽  
O. D. Constantinescu ◽  
M. W. Dunlop ◽  
...  

Abstract. A study of the interaction of solar wind magnetic field rotations with the Earth's magnetosphere is performed. For this event there is, for the first time, a full coverage over the dayside magnetosphere with multiple (multi)spacecraft missions from dawn to dusk, combined with ground magnetometers, radar and an auroral camera, this gives a unique coverage of the response of the Earth's magnetosphere. After a long period of southward IMF Bz and high dynamic pressure of the solar wind, the Earth's magnetosphere is eroded and compressed and reacts quickly to the turning of the magnetic field. We use data from the solar wind monitors ACE and Wind and from magnetospheric missions Cluster, THEMIS, DoubleStar and Geotail to investigate the behaviour of the magnetic rotations as they move through the bow shock and magnetosheath. The response of the magnetosphere is investigated through ground magnetometers and auroral keograms. It is found that the solar wind magnetic field drapes over the magnetopause, while still co-moving with the plasma flow at the flanks. The magnetopause reacts quickly to IMF Bz changes, setting up field aligned currents, poleward moving aurorae and strong ionospheric convection. Timing of the structures between the solar wind, magnetosheath and the ground shows that the advection time of the structures, using the solar wind velocity, correlates well with the timing differences between the spacecraft. The reaction time of the magnetopause and the ionospheric current systems to changes in the magnetosheath Bz seem to be almost immediate, allowing for the advection of the structure measured by the spacecraft closest to the magnetopause.


2021 ◽  
Author(s):  
Martin Volwerk ◽  
Beatriz Sánchez-Cano ◽  
Daniel Heyner ◽  
Sae Aizawa ◽  
Nicolas André ◽  
...  

Abstract. Out of the two Venus flybys that BepiColombo uses as a gravity assist manoeuvre to finally arrive at Mercury, the first took place on 15 October 2020. After passing the bow shock, the spacecraft travelled along the induced magnetotail, crossing it mainly in the YVSO-direction. In this paper, the BepiColombo Mercury Planetary Orbiter Magnetometer (MPO-MAG) data are discussed, with support from three other plasma instruments: the Planetary Ion Camera (PICAM), the Mercury Electron Analyser (MEA) and the radiation monitor (BERM). Behind the bow shock crossing, the magnetic field showed a draping pattern consistent with field lines connected to the interplanetary magnetic field wrapping around the planet. This flyby showed a highly active magnetotail, with, e.g., strong flapping motions at a period of ~7 min. This activity was driven by solar wind conditions. Just before this flyby, Venus's induced magnetosphere was impacted by a stealth coronal mass ejection, of which the trailing side was still interacting with it during the flyby. This flyby is a unique opportunity to study the full length and structure of the induced magnetotail of Venus, indicating that the tail was most likely still present at about 48 Venus radii.


2018 ◽  
Author(s):  
Minna Palmroth ◽  
Heli Hietala ◽  
Ferdinand Plaschke ◽  
Martin Archer ◽  
Tomas Karlsson ◽  
...  

Abstract. We use a global hybrid-Vlasov simulation for the magnetosphere, Vlasiator, to investigate magnetosheath high-speed jets. Unlike many other hybrid-kinetic simulations, Vlasiator includes an unscaled geomagnetic dipole, indicating that the simulation spatial and temporal dimensions can be given without scaling. Thus, for the first time, this allows investigating the magnetosheath jet properties and comparing them directly with the observed jets within the Earth's magnetosheath. In the run shown in this paper, the interplanetary magnetic field (IMF) cone angle is 30°, and a foreshock develops upstream of the quasi-parallel magnetosheath. We visually detect a structure with high dynamic pressure propagating from the bow shock towards the magnetopause. The structure is confirmed as a jet using three different criteria, which have been adopted in previous observational studies. We compare these criteria against the simulation results. We find that the magnetosheath jet is an elongated structure extending Earthward of the bow shock by ~ 2.3 RE, while its size perpendicular to the direction of propagation is ~ 0.5 RE. We also investigate the jet evolution, and find that the jet originates due to the interaction of the foreshock Ultra Low Frequency (ULF) waves with the bow shock surface. The simulation shows that magnetosheath jets can develop also under steady IMF, as inferred by observational studies.


Sign in / Sign up

Export Citation Format

Share Document