scholarly journals Connection between the length of day and wind measurements in the mesosphere and lower thermosphere at mid- and high latitudes

2019 ◽  
Vol 37 (1) ◽  
pp. 1-14
Author(s):  
Sven Wilhelm ◽  
Gunter Stober ◽  
Vivien Matthias ◽  
Christoph Jacobi ◽  
Damian J. Murphy

Abstract. This work presents a connection between the density variation within the mesosphere and lower thermosphere (MLT) and changes in the intensity of solar radiation. On a seasonal timescale, these changes take place due to the revolution of the Earth around the Sun. While the Earth, during the northern-hemispheric (NH) winter, is closer to the Sun, the upper mesosphere expands due to an increased radiation intensity, which results in changes in density at these heights. These density variations, i.e., a vertical redistribution of atmospheric mass, have an effect on the rotation rate of Earth's upper atmosphere owing to angular momentum conservation. In order to test this effect, we applied a theoretical model, which shows a decrease in the atmospheric rotation speed of about ∼4 m s−1 at a latitude of 45∘ in the case of a density change of 1 % between 70 and 100 km. To support this statement, we compare the wind variability obtained from meteor radar (MR) and Microwave Limb Sounder (MLS) satellite observations with fluctuations in the length of a day (LOD). Changes in the LOD on timescales of a year and less are primarily driven by tropospheric large-scale geophysical processes and their impact on the Earth's rotation. A global increase in lower-atmospheric eastward-directed winds leads, due to friction with the Earth's surface, to an acceleration of the Earth's rotation by up to a few milliseconds per rotation. The LOD shows an increase during northern winter and decreases during summer, which corresponds to changes in the MLT density due to the Earth–Sun movement. Within the MLT the mean zonal wind shows similar fluctuations to the LOD on annual scales as well as longer time series, which are connected to the seasonal wind regime as well as to density changes excited by variations in the solar radiation. A direct correlation between the local measured winds and the LOD on shorter timescales cannot clearly be identified, due to stronger influences of other natural oscillations on the wind. Further, we show that, even after removing the seasonal and 11-year solar cycle variations, the mean zonal wind and the LOD are connected by analyzing long-term tendencies for the years 2005–2016.

2018 ◽  
Author(s):  
Sven Wilhelm ◽  
Gunter Stober ◽  
Vivien Matthias ◽  
Christoph Jacobi ◽  
Damian J. Murphy

Abstract. This work presents a connection between the density variation within the mesosphere and lower thermosphere (MLT) and changes in the intensity of the solar radiation. On a seasonal time scale, these changes take place due to the revolution of the Earth around the Sun. While the Earth, during the northern hemispheric winter, is closer to the Sun, the upper mesosphere expands due to an increased radiation intensity, which results in changes in density at these heights. Theses density variations, i.e. a vertical redistribution of atmospheric mass, have an effect on the rotation rate of Earth's upper atmosphere owing to angular momentum conservation. In order to test this effect we applied a theoretical model, which shows a decrease of the atmospheric rotation speed of about ~ 4 m/s in the case of a density change of 1 % between 70 and 100 km. To support this statement, we compare the wind variability obtained from meteor radar (MR) and MLS satellite observations with fluctuations in the length of a day (LOD). The LOD is defined as the difference between the astronomical determined time the Earth needs for a full turnaround and a standard day length of 86.400 seconds. Changes in the LOD on time scales of a year and less are primarily driven by tropospheric large scale geophysical processes. A global increase of eastward directed winds leads, due to friction with the Earth's surface, to an acceleration of the Earth's rotation by up to a few milliseconds per rotation. The LOD shows an increase during northern winter and decrease during summer, which corresponds to changes in the MLT density due to the Earth – Sun movement. Further, we show that, even after removing the seasonal and solar cycle variations, the wind and the LOD are connected, by analyzing trends for the years 2005–2016.


2012 ◽  
Vol 12 (3) ◽  
pp. 1571-1585 ◽  
Author(s):  
K. A. Day ◽  
M. J. Taylor ◽  
N. J. Mitchell

Abstract. Atmospheric temperatures and winds in the mesosphere and lower thermosphere have been measured simultaneously using the Aura satellite and a meteor radar at Bear Lake Observatory (42° N, 111° W), respectively. The data presented in this study is from the interval March 2008 to July 2011. The mean winds observed in the summer-time over Bear Lake Observatory show the meridional winds to be equatorward at meteor heights during April−August and to reach monthly-mean velocities of −12 m s−1. The mean winds are closely related to temperatures in this region of the atmosphere and in the summer the coldest mesospheric temperatures occur about the same time as the strongest equatorward meridional winds. The zonal winds are eastward through most of the year and in the summer strong eastward zonal wind shears of up to ~4.5 m s−1 km−1 are present. However, westward winds are observed at the upper heights in winter and sometimes during the equinoxes. Considerable inter-annual variability is observed in the mean winds and temperatures. Comparisons of the observed winds with URAP and HWM-07 reveal some large differences. Our radar zonal wind observations are generally more eastward than predicted by the URAP model zonal winds. Considering the radar meridional winds, in comparison to HWM-07 our observations reveal equatorward flow at all meteor heights in the summer whereas HWM-07 suggests that only weakly equatorward, or even poleward flows occur at the lower heights. However, the zonal winds observed by the radar and modelled by HWM-07 are generally similar in structure and strength. Signatures of the 16- and 5-day planetary waves are clearly evident in both the radar-wind data and Aura-temperature data. Short-lived wave events can reach large amplitudes of up to ~15 m s−1 and 8 K and 20 m s−1 and 10 K for the 16- and 5-day waves, respectively. A clear seasonal and short-term variability are observed in the 16- and 5-day planetary wave amplitudes. The 16-day wave reaches largest amplitude in winter and is also present in summer, but with smaller amplitudes. The 5-day wave reaches largest amplitude in winter and in late summer. An inter-annual variability in the amplitude of the planetary waves is evident in the four years of observations. Some 41 episodes of large-amplitude wave occurrence are identified. Temperature and wind amplitudes for these episodes, AT and AW, that passed the Student T-test were found to be related by, AT = 0.34 AW and AT = 0.62 AW for the 16- and 5-day wave, respectively.


Author(s):  
L. V. Morrison ◽  
F. R. Stephenson ◽  
C. Y. Hohenkerk ◽  
M. Zawilski

Historical reports of solar eclipses are added to our previous dataset (Stephenson et al. 2016 Proc. R. Soc. A 472 , 20160404 ( doi:10.1098/rspa.2016.0404 )) in order to refine our determination of centennial and longer-term changes since 720 BC in the rate of rotation of the Earth. The revised observed deceleration is −4.59 ± 0.08 × 10 −22  rad s −2 . By comparison the predicted tidal deceleration based on the conservation of angular momentum in the Sun–Earth–Moon system is −6.39 ± 0.03 × 10 −22  rad s −2 . These signify a mean accelerative component of +1.8 ± 0.1 × 10 −22  rad s −2 . There is also evidence of an oscillatory variation in the rate with a period of about 14 centuries.


2021 ◽  
Author(s):  
Juliana Jaen ◽  
Toralf Renkwitz ◽  
Jorge L. Chau ◽  
Maosheng He ◽  
Peter Hoffmann ◽  
...  

Abstract. Specular meteor radars (SMRs) and partial reflection radars (PRRs) have been observing mesospheric winds for more than a solar cycle over Germany (~54 °N) and northern Norway (~69 °N). This work investigates the mesospheric mean zonal wind and the zonal mean geostrophic zonal wind from the Microwave Limb Sounder (MLS) over these two regions between 2004 and 2020. Our study focuses on the summer when strong planetary waves are absent and the stratospheric and tropospheric conditions are relatively stable. We establish two definitions of the summer length according to the zonal wind reversals: (1) the mesosphere and lower thermosphere summer length (MLT-SL) using SMR and PRR winds, and (2) the mesosphere summer length (M-SL) using PRR and MLS. Under both definitions, the summer begins around April and ends around mid-September. The largest year to year variability is found in the summer beginning in both definitions, particularly at high-latitudes, possibly due to the influence of the polar vortex. At high-latitudes, the year 2004 has a longer summer length compared to the mean value for MLT-SL, as well as 2012 for both definitions. The M-SL exhibits an increasing trend over the years, while MLT-SL does not have a well-defined trend. We explore a possible influence of solar activity, as well as large-scale atmospheric influences (e.g. quasi-biennial oscillations (QBO), El Niño-southern oscillation (ENSO), major sudden stratospheric warming events). We complement our work with an extended time series of 31 years at mid-latitudes using only PRR winds. In this case, the summer length shows a breakpoint, suggesting a non-uniform trend, and periods similar to those known for ENSO and QBO.


The force of gravity of the sun on the earth, when the axis of the earth is found at a specific angle towards the sun in the summer and the winter, moves the earth’s mantle, including the axis of the earth’s rotation. This force is the main thing that changes the location of the axis of the earth’s rotation on the mantle of the earth and, to a minor extent or not at all, causes a change in the angle of the earth’s rotation in relation to the sun, and to the earth’s ecliptic plane.


2014 ◽  
Vol 9 (S310) ◽  
pp. 13-16
Author(s):  
Victor A. Brumberg ◽  
Tamara V. Ivanova

AbstractRepresenting a post-scriptum supplementary to a previous paper of the authors Brumberg & Ivanova (2011) this note aims to simplify the practical development of the Earth's rotation theory, in the framework of the general planetary theory, avoiding the non–physical secular terms and involving the separation of the fast and slow angular variables, both for planetary–lunar motion and Earth's rotation. In this combined treatment of motion and rotation, the fast angular terms are related to the mean orbital longitudes of the bodies, the diurnal and Euler rotations of the Earth. The slow angular terms are due to the motions of pericenters and nodes, as well as the precession of the Earth. The combined system of the equations of motion for the principal planets and the Moon and the equations of the Earth's rotation is reduced to the autonomous secular system with theoretically possible solution in a trigonometric form. In the above–mentioned paper, the Earth's rotation has been treated in Euler parameters. The trivial change of the Euler parameters to their small declinations from some nominal values may improve the practical efficiency of the normalization of the Earth's rotation equations. This technique may be applied to any three-axial rigid planet. The initial terms of the corresponding expansions are given in the Appendix.


2016 ◽  
Vol 4 (2) ◽  
pp. 68
Author(s):  
Sushil Yadav ◽  
Rajiv Aggarwal ◽  
Bhavneet Kaur

This paper investigates resonances in the perturbations of a synchronous satellite including its latitude, angular rate of the earth-moon system around the sun and the earth’s rotation rate about its axis. This is found that resonances occur due to the commensurability between (i) angular velocity of the satellite and angular rate of earth’s rotation about its axis and (ii) angular rate of the earth-moon system around the sun and angular rate of the rotation of the earth. Amplitude and time-period of the oscillation at the resonance points are determined using the procedure of Brown and Shook [3]. Effect of  (orbital angle of the mass-centre of the earth-moon system around the sun) on amplitude and time period is also analyzed. It is found that for increasing the values of  from to  amplitude decreases and time period also decreases. Effect of time on the latitude of the satellite including earth oblateness is also studied. It is seen that for increasing the value of , there is a small change in ,  the latitude of the synchronous satellite.


1926 ◽  
Vol 25 (3) ◽  
pp. 285-294 ◽  
Author(s):  
P. A. Buxton

The “Radiation Integrator in Vacuo” is an instrument designed by a biologist, to assist in the study of solar radiation, as received on the surface of the earth. The principle of the instrument is that a black bulb in vacuo is exposed to the sun's rays; the bulb, which contains alcohol, is connected to a graduated stem maintained at shade temperature; radiant heat from the sun causes alcohol to distil over the bulb into the stem where its volume is measured. In Samoa the shade temperature is practically constant throughout the year, but one believes on theoretical grounds that more radiation is received from the sun between September and March than at the other season, and that the radiation has two maxima, in October and February. This instrument, which has been observed for 12 months, confirms the expectation. The daily mean distillate, the distillate per hour of sunshine (Campbell Stokes) and the mean distillate for the three hours before noon, all show the same seasonal changes.The instrument has been standardized against Gorczynski's pyrheliometer, so that the readings in c.c. of alcohol can be converted into calories. The instrument is not difficult to make or read, and it can be left in the open in all weathers. It integrates its results and requires to be read once a day in Samoa.


2011 ◽  
Vol 11 (11) ◽  
pp. 30381-30418
Author(s):  
K. A. Day ◽  
M. J. Taylor ◽  
N. J. Mitchell

Abstract. Atmospheric temperatures and winds in the mesosphere and lower thermosphere have been measured simultaneously using the Aura satellite and a meteor radar at Bear Lake Observatory (42° N, 111° W). The data presented in this study is from the interval March 2008 to July 2011. The mean winds observed in the summer-time over Bear Lake Observatory show the meridional winds to be equatorward at all heights during April-August and to reach monthly-mean speeds of −12 ms−1. The mean winds are closely related to temperatures in this region of the atmosphere and in the summer the coldest mesospheric temperatures occur about two weeks after the strongest equatorward meridional winds. In other seasons the meridional winds are poleward, reaching monthly-mean values of up to 12 ms−1. The zonal winds are eastward through most of the year and in the summer strong eastward zonal wind shears of up to ~4.5 ms−1 km−1 are present. However, westward winds are observed at the upper heights in winter and sometimes during the equinoxes. Considerable inter-annual variability is observed in the mean winds and temperatures. Comparisons of the observed winds with URAP and HWM-07 reveal some significant differences. Our radar zonal wind observations are generally more weakly eastward than these predicted by the URAP model zonal winds. Considering the radar meridional winds, in comparison to the HWM-07 our observations reveal equatorward flow at all heights in the summer whereas HWM-07 suggests that only weakly equatorward, or even poleward, flows occur at the lower heights. However, the zonal winds observed by the radar and modelled by HWM-07 are generally similar in structure and strength. Signatures of the 16- and 5-day planetary waves are clearly evident in both the radar-wind data and Aura-temperature. Short-lived wave events can reach large amplitudes of up to ~15 ms−1 and 8 K and 20 ms−1 and 10 K for the 16- and 5-day wave, respectively. A clear seasonal and short-term variability are observed in the 16- and 5-day planetary wave amplitudes. The 16-day wave reaches largest amplitude in winter and is also present in summer, but with smaller amplitudes. The 5-day wave reaches largest amplitude in winter and in late summer. An inter-annual variability of the amplitude of the planetary waves are evident in the four years of observations. Some 32 episodes of large-amplitude wave occurrence are investigated and the temperature and wind amplitudes, AT and AW, are found to be related by, AT=0.49 AW and AT=0.58 AW for the 16- and 5-day wave, respectively.


Sign in / Sign up

Export Citation Format

Share Document