scholarly journals 3D Contour Shaping of Buried Objects in Soil

2021 ◽  
Vol 19 ◽  
pp. 173-178
Author(s):  
Christian Siebauer ◽  
Heyno Garbe

Abstract. The basic question of this paper was, whether a detected anomaly found in the ground during an explosives disposal process is actually a non-detonated bomb or non-dangerous metallic scrap. Based on a borehole radar, an approach is to be presented in which first a 2-dimensional contour of the object is created with the aid of a spatial runtime evaluation. By repeating this step at different depths with subsequent graphic overlay, a 3D shape of the buried object is created. The method is first tested using a simulation model with inhomogeneous soil. In the second step the method will be applied and evaluated using a field measurement of a real object. The results shows that both 2D and 3D evaluations reflect the position and orientation of the object. Furthermore, the shape and the dimensions can be estimated, with the restriction that the 3D contour has distortions along the vertical axis. The aim of this work is to show an application of borehole radar, with which the identification of buried objects should be facilitated.

2009 ◽  
Vol 2009 ◽  
pp. 1-4
Author(s):  
Dong Han ◽  
Caroline Fossati ◽  
Salah Bourennane ◽  
Zineb Saidi

A new algorithm which associates (Multiple Signal Classification) MUSIC with acoustic scattering model for bearing and range estimation is proposed. This algorithm takes into account the reflection and the refraction of wave in the interface of water-sediment in underwater acoustics. A new directional vector, which contains the Direction-Of-Arrival (DOA) of objects and objects-sensors distances, is used in MUSIC algorithm instead of classical model. The influence of the depth of buried objects is discussed. Finally, the numerical results are given in the case of buried cylindrical shells.


2011 ◽  
Vol 105-107 ◽  
pp. 80-83
Author(s):  
Jun Zhang ◽  
Xin Wu Zeng ◽  
Yi Bo Wang ◽  
Zhen Fu Zhang ◽  
Dan Chen

Detection and classification of buried objects is of great importance in underwater counterterrorism and archaeology. To penetrate the sediment, a low frequency intensive acoustic source is needed. Underwater plasma acoustic source (UPAS) with high voltage discharge has the advantage of adjustable pulse length, high source level output and no pollution to the environment, which can satisfy these needs. In this paper, we introduced the UPAS, including its basic mechanism, structure and pressure output. Then we build up an elastic wave propagation model, solved it with finite difference and staggered grid methods, and combined with certain source and boundary condition, we simulated and analyzed the pressure wave propagation in time domain with an aluminum cylinder buried in sediment, from the results we validated the effectiveness of UPAS in the application of buried object detection.


1966 ◽  
Vol 49 (6) ◽  
pp. 29-57 ◽  
Author(s):  
David S. Hogness

The position and orientation of genes in lambda and lambda dg DNA are described. The position of six genes located in the right half of isolated lambda DNA was found to be -(N, iλ)--O-P---Q-R-(right end of DNA), which is their order on the genetic map of the vegetative phage. The order of the three genes of the galactose operon (k, t, and e) located in the left half of lambda dg DNA was found to be (left end of DNA)----k-t-e-, consistent with Campbell's model (5) for the formation of this variant. Gene orientation, defined as the direction of transcription along the DNA, is inferred to be from right to left for the galactose operon in lambda dg DNA. The strand of lambda DNA which functions as template in transcription of N, an "early" gene required for normal replication of lambda DNA, was determined as a first step in ascertaining the orientation of this gene. The method includes isolation of each strand, formation of each of two heteroduplex molecules consisting of one strand from wild-type and one from an N mutant) and comparison of their N activities. The second step, which consists of ascertaining the 5'-to-3' direction of each strand, is discussed, as is a determination of the orientation of gene R.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Matteo Pastorino ◽  
Andrea Randazzo

An approach to reconstruct buried objects is proposed. It is based on the integral equations of the electromagnetic inverse scattering problem, written in terms of the Green’s function for half-space geometries. The full nonlinearity of the problem is exploited in order to inspect strong scatterers. After discretization of the continuous model, the resulting equations are solved in a regularization sense by means of a two-step inexact Newton algorithm. The capabilities and limitations of the method are evaluated by means of some numerical simulations.


Geosciences ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 132
Author(s):  
Roger Tilley ◽  
Hamid Sadjadpour ◽  
Farid Dowla

Compositing of ground penetrating radar (GPR) scans of differing frequencies have been found to produce cleaner images at depth using the Gaussian mixture model (GMM) feature of the expectation-maximization (EM) algorithm. GPR scans at various heights (“Stand Off”), as well as ground-based scans, have been studied. In this paper, we compare the GPR response from a chirp excitation function-based radar with the response from the EM GMM algorithm compositing process, using the same mix of frequencies. A chirp excitation pulse was found to be effective in delineating the defined buried object, but the resulting image is less sharp than the GMM EM method.


2021 ◽  
Vol 1090 (1) ◽  
pp. 012042
Author(s):  
Hussain M. Alshamy ◽  
Jafar W. Abdul Sadah ◽  
Thamir R. Saeed ◽  
Shaymaa A. Mohammed ◽  
Ghufran M. Hatem ◽  
...  

2020 ◽  
Vol 6 (16) ◽  
pp. eaaz7301
Author(s):  
Gerald Guerin ◽  
Menandro Cruz ◽  
Qing Yu

The fabrication of three-dimensional (3D) objects by polymer self-assembly in solution is extremely challenging. Here, multi-tori mesostructures were obtained from the crystallization-driven self-assembly of a coil-crystalline block copolymer (BCP) in mixed solvents. The formation of these structures follows a multistep process. First, the BCP self-assembles into amorphous micrometer-large vesicles. Then, the BCP confined in these mesosized vesicles crystallizes. This second step leads to the formation of objects with shapes ranging from closed 3D multi-tori spherical shells to 2D toroid mesh monolayers, depending on the solvent mixture composition. This approach demonstrates how topological constraints induced by the specific interactions between coil-crystalline BCP and solvents can be used to prepare mesostructures of complex morphologies.


2011 ◽  
Vol 27 (3) ◽  
pp. 183 ◽  
Author(s):  
Dominique Jeulin ◽  
Maxime Moreaud

We use a method to estimate local orientations in the n-dimensional space from the covariance matrix of the gradient, which can be implemented either in the image space or in the Fourier space. In a second step, two methods allow us to detect sudden changes of orientation in images. The first one uses an index of confidence of the estimated orientation, and the second one the detection of minima of scalar products in a neighbourhood. This is illustrated on 2D Transmission Electrons Microscope images of cellulose cryofracture (to display the organisation of cellulose whiskers and the points of germination), and to 3D images of a TA6V alloy (lamellar microstructure) obtained by microtomography.


2019 ◽  
Vol 15 (2) ◽  
pp. 71-77
Author(s):  
Ahmed Albaghdadi ◽  
Abduladhem Ali

It can be said that the system of sensing the tilt angle and speed of a multi-rotor copter come in the first rank among all the other sensors on the multi-rotor copters and all other planes due to its important roles for stabilization. The MPU6050 sensor is one of the most popular sensors in this field. It has an embedded 3-axis accelerometer and a 3-axis gyroscope. It is a simple sensor in dealing with it and extracting accurate data. Everything changes when this sensor is placed on the plane. It becomes very complicated to deal with it due to vibration of the motors on the multirotor copter. In this study, two main problems were diagnosed was solved that appear in most sensors when they are applied to a high-frequency vibrating environment. The first problem is how to get a precise angle of the sensor despite the presence of vibration. The second problem is how to overcome the errors that appear when the multirotor copter revolves around its vertical axis during the tilting in either direction x or y or both. The first problem was solved in two steps. The first step involves mixing data of the gyroscope sensor with the data of auxetometer sensor by a mathematical equation based on optimized complementary filter using gray wolf optimization algorithm GWO. The second step involves designing a suitable FIR filter for data. The second problem was solved by finding a non-linear mathematical relationship between the angles of the copter in both X and Y directions, and the rotation around the vertical axis of multirotor copter frame.


This paper comprises a step wise method of approximating the size of an underground object using GPR (Ground Penetrating Radar). It involves more than just using predefined filters and techniques. Usage of Trivial method of mathematics to calculate the top surface dimensions of the buried objects is the main purpose of this paper. Problem that is faced that, only the presence of any object can be known using the GPR resource, but not exactly how to derive the size of the object using the same data. This method consists of a dual approach to the problem to make sure that the data that is being given out is accurate. The objectives of this paper are to use the GPR to calculate the top surface dimension of a buried object at a suitable depth according to the frequency. The steps that are incorporated include pre-processing of raw data, determination of ROI (Region of interest) from the pre-processed data, Application of appropriate filters for image processing and estimating surface area and depth of the concealed object. The main reason of this paper is to serve the purpose of detecting what is under the ground in a quick and simpler way using the algorithm proposed


Sign in / Sign up

Export Citation Format

Share Document