scholarly journals Computation of electrostatic fields in anisotropic human tissues using the Finite Integration Technique (FIT)

2005 ◽  
Vol 2 ◽  
pp. 309-313 ◽  
Author(s):  
V. C. Motresc ◽  
U. van Rienen

Abstract. The exposure of human body to electromagnetic fields has in the recent years become a matter of great interest for scientists working in the area of biology and biomedicine. Due to the difficulty of performing measurements, accurate models of the human body, in the form of a computer data set, are used for computations of the fields inside the body by employing numerical methods such as the method used for our calculations, namely the Finite Integration Technique (FIT). A fact that has to be taken into account when computing electromagnetic fields in the human body is that some tissue classes, i.e. cardiac and skeletal muscles, have higher electrical conductivity and permittivity along fibers rather than across them. This property leads to diagonal conductivity and permittivity tensors only when expressing them in a local coordinate system while in a global coordinate system they become full tensors. The Finite Integration Technique (FIT) in its classical form can handle diagonally anisotropic materials quite effectively but it needed an extension for handling fully anisotropic materials. New electric voltages were placed on the grid and a new averaging method of conductivity and permittivity on the grid was found. In this paper, we present results from electrostatic computations performed with the extended version of FIT for fully anisotropic materials.

2005 ◽  
Vol 3 ◽  
pp. 227-231 ◽  
Author(s):  
V. C. Motrescu ◽  
U. van Rienen

Abstract. In the recent years, the task of estimating the currents induced within the human body by environmental electromagnetic fields has received increased attention from scientists around the world. While important progress was made in this direction, the unpredictable behaviour of living biological tissue made it difficult to quantify its reaction to electromagnetic fields and has kept the problem open. A successful alternative to the very difficult one of performing measurements is that of computing the fields within a human body model using numerical methods implemented in a software code. One of the difficulties is represented by the fact that some tissue types exhibit an anisotropic character with respect to their dielectric properties. Our work consists of computing currents induced by extremely low frequency (ELF) electric fields in anisotropic muscle tissues using in this respect, a human body model extended with muscle fibre orientations as well as an extended version of the Finite Integration Technique (FIT) able to compute fully anisotropic dielectric properties.


Author(s):  
V. A. Martynyuk ◽  
V. A. Trudonoshin ◽  
V. G. Fedoruk

The article deals with a mathematical model of the "screw-nut" connection adapted for using in universal software systems to analyse dynamic characteristics. This article is sequel to a number of earlier authors-written articles devoted to object simulation of 3D mechanics. Such a model available in the library of mathematical models of the modelling system will significantly extend the list of simulated mechanisms. The mathematical model of "screw-nut" connection suggests such a connection between absolutely rigid bodies. The "screw-nut" connection parameters are the following:thread pitch by the radian of the angle of pitch;coordinates of the point on the axis of the screw in the local coordinate system of the body 1;direction cosines of the screw axis in the local coordinate system of the body 1.Note that the connection parameters have constant values. Two drawbacks of this model should be noted.1. Some expressions of the mathematical model involve dividing by direction cosine  of the screw axis thereby eliminating "division by zero" when the axis of the screw is perpendicular to the x-axis of the global coordinate system. The software-based way allows eliminating this shortcoming.2. The model does not include coordinates of mass centres of bodies tied by connection. This can lead to a significant "mismatch" in the position of the bodies in modelling of multi- periodic transient processes. However, adding an elastic model to the mathematical model can eliminate this drawback.The article demonstrates the "screw-nut" connection model to simulate a jack using the PA8 system and comparing its results with those obtained with help of the NX10 complex. Gives, in addition, the results of influence in terms of dry friction in the "screw-nut" connection. Taking into consideration the dry friction allows us to reflect the effect of "self-stopping" in the jack.


2016 ◽  
Vol 138 (6) ◽  
Author(s):  
Brian T. Weaver ◽  
Jerrod E. Braman ◽  
Roger C. Haut

A direct method to express the center of pressure (CoP) measured by an insole pressure sensor system (IPSS) into a known coordinate system measured by motion tracking equipment is presented. A custom probe was constructed with reflective markers to allow its tip to be precisely tracked with motion tracking equipment. This probe was utilized to activate individual sensors on an IPSS that was placed in a shoe fitted with reflective markers used to establish a local shoe coordinate system. When pressed onto the IPSS the location of the probe's tip was coincident with the CoP measured by the IPSS (IPSS-CoP). Two separate pushes (i.e., data points) were used to develop vectors in each respective coordinate system. Simple vector mathematics determined the rotational and translational components of the transformation matrix needed to express the IPSS-CoP into the local shoe coordinate system. Validation was performed by comparing IPSS-CoP with an embedded force plate measured CoP (FP-CoP) from data gathered during kinematic trials. Six male subjects stood on an embedded FP and performed anterior/posterior (AP) sway, internal rotation, and external rotation of the body relative to a firmly planted foot. The IPSS-CoP was highly correlated with the FP-CoP for all motions, root mean square errors (RMSRRs) were comparable to other research, and there were no statistical differences between the displacement of the IPSS-CoP and FP-CoP for both the AP and medial/lateral (ML) axes, respectively. The results demonstrated that this methodology could be utilized to determine the transformation variables need to express IPSS-CoP into a known coordinate system measured by motion tracking equipment and that these variables can be determined outside the laboratory anywhere motion tracking equipment is available.


2018 ◽  
Vol 97 (7) ◽  
pp. 618-622
Author(s):  
Svetlana G. Yashchenko ◽  
S. E. Shibanov ◽  
S. Yu. Rybalko ◽  
O. A. Grigoriev

To date, the greatest «contribution» to the electromagnetic load experienced by young people is made by modern means of communication, namely mobile phones (MPhs) and personal computers (PCs). Electromagnetic radiation generated by a PC can cause the development of functional disorders and pathological conditions. The possibility of formation of antibodies in the body under the influence of electromagnetic fields (EMF) of the PC is established. The prevalence rate of gestosis and the risk of spontaneous miscarriages are high. At the same time, the exposure dose of 20 hours per week is considered critical. Experimental studies of EMF in the operation of laptops revealed EMF of the microwave range in 25% of cases. A separate problem is the use of mobile communications. In studies conducted on adult volunteers-MPh users, changes in the electroencephalogram were found. Experimental studies in experimental animals have shown that the effect of EMF of MPhs on experimental animals in the embryonic period influences the development of the fetus in the uterus and the subsequent formation of the organism. In adult animals, the reproductive function is impaired: the number of spermatozoa decreases, morphological changes in the testicles appear. In real conditions, EMF from various sources operates on the population. But, as a rule, we consider the danger from one or two sources. The interference of the dangers of these sources is not established taking into account the age and specificity of the subject’s work. At present, the investigation of the complex effect of non-ionizing electromagnetic factors of the external environment on the human body is topical.


2019 ◽  
pp. 3-13
Author(s):  
Alexandru Cîtea ◽  
George-Sebastian Iacob

Posture is commonly perceived as the relationship between the segments of the human body upright. Certain parts of the body such as the cephalic extremity, neck, torso, upper and lower limbs are involved in the final posture of the body. Musculoskeletal instabilities and reduced postural control lead to the installation of nonstructural posture deviations in all 3 anatomical planes. When we talk about the sagittal plane, it was concluded that there are 4 main types of posture deviation: hyperlordotic posture, kyphotic posture, rectitude and "sway-back" posture.Pilates method has become in the last decade a much more popular formof exercise used in rehabilitation. The Pilates method is frequently prescribed to people with low back pain due to their orientation on the stabilizing muscles of the pelvis. Pilates exercise is thus theorized to help reactivate the muscles and, by doingso, increases lumbar support, reduces pain, and improves body alignment.


Humaniora ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 83-90
Author(s):  
Anak Agung Ayu Wulandari ◽  
Ade Ariyani Sari Fajarwati

The research would look further at the representation of the human body in both Balinese and Javanese traditional houses and compared the function and meaning of each part. To achieve the research aim, which was to evaluate and compare the representation of the human body in Javanese and Balinese traditional houses, a qualitative method through literature and descriptive analysis study was conducted. A comparative study approach would be used with an in-depth comparative study. It would revealed not only the similarities but also the differences between both subjects. The research shows that both traditional houses represent the human body in their way. From the architectural drawing top to bottom, both houses show the same structure that is identical to the human body; head at the top, followed by the body, and feet at the bottom. However, the comparative study shows that each area represents a different meaning. The circulation of the house is also different, while the Balinese house is started with feet and continued to body and head area. Simultaneously, the Javanese house is started with the head, then continued to body, and feet area.


2017 ◽  
Vol 929 (11) ◽  
pp. 2-10
Author(s):  
A.V. Vinogradov

Pretty before long there will be transition to the geodetic system of coordinates of GSK-2011. For the transition period it is necessary to develop a method of recalculating coordinates from one system to another. The existing methods of recalculating coordinates are designed for recalculating coordinate points of state geodetic networks (GGS) and geodetic local networks (GSS). For small areas (administrative districts, populated areas) simplified methods are more acceptable. You need to choose the resampling methods that can be applied in small businesses, performing surveying works. The article presents the the results of calculations of changes of coordinates of the same point in GSK-2011 and SC-95 in six-degree zones of Gauss projection. It was found that in each region values of the shifts changed to small ones. Therefore, it is possible to convert the coordinates of the points by the simplified formulae. For recalculation from the coordinates of GSK-2011 in SK-95 or local coordinate system (WCS) of the administrative district it is necessary to find the origin of coordinates, scale value and rotation of the coordinate axes. The error of the conversion shall not exceed 0,001 m. The coordinates of the initial point of the local coordinate system relative to the central meridian of the local coordinate system shall be added in the list of parameters of the transition from local coordinate system to the state one.


Sign in / Sign up

Export Citation Format

Share Document