scholarly journals Sequential nutrient uptake as a potential mechanism for phytoplankton to maintain high primary productivity and balanced nutrient stoichiometry

2017 ◽  
Vol 14 (9) ◽  
pp. 2469-2480 ◽  
Author(s):  
Kedong Yin ◽  
Hao Liu ◽  
Paul J. Harrison

Abstract. We hypothesize that phytoplankton have the sequential nutrient uptake strategy to maintain nutrient stoichiometry and high primary productivity in the water column. According to this hypothesis, phytoplankton take up the most limiting nutrient first until depletion, continue to draw down non-limiting nutrients and then take up the most limiting nutrient rapidly when it is available. These processes would result in the variation of ambient nutrient ratios in the water column around the Redfield ratio. We used high-resolution continuous vertical profiles of nutrients, nutrient ratios and on-board ship incubation experiments to test this hypothesis in the Strait of Georgia. At the surface in summer, ambient NO3− was depleted with excess PO43− and SiO4− remaining, and as a result, both N : P and N : Si ratios were low. The two ratios increased to about 10 : 1 and 0. 45 : 1, respectively, at 20 m. Time series of vertical profiles showed that the leftover PO43− continued to be removed, resulting in additional phosphorus storage by phytoplankton. The N : P ratios at the nutricline in vertical profiles responded differently to mixing events. Field incubation of seawater samples also demonstrated the sequential uptake of NO3− (the most limiting nutrient) and then PO43− and SiO4− (the non-limiting nutrients). This sequential uptake strategy allows phytoplankton to acquire additional cellular phosphorus and silicon when they are available and wait for nitrogen to become available through frequent mixing of NO3− (or pulsed regenerated NH4). Thus, phytoplankton are able to maintain high productivity and balance nutrient stoichiometry by taking advantage of vigorous mixing regimes with the capacity of the stoichiometric plasticity. To our knowledge, this is the first study to show the in situ dynamics of continuous vertical profiles of N : P and N : Si ratios, which can provide insight into the in situ dynamics of nutrient stoichiometry in the water column and the inference of the transient status of phytoplankton nutrient stoichiometry in the coastal ocean.

2016 ◽  
Author(s):  
Kedong Yin ◽  
Paul J. Harrison

Abstract. We hypothesize that phytoplankton have the sequential nutrient uptake strategy in order to maintain nutrient stoichiometry and high primary productivity in the water column. Nutrient limited phytoplankton are capable of taking up the limiting nutrient first and they take up non-limiting nutrients when the limiting nutrient debt has been overcome. We used high resolution continuous vertical profiles of nutrients, nutrient ratios and on-board ship incubation experiments to test this hypothesis in the Strait of Georgia. At the surface in summer, ambient nitrate was depleted with excess phosphate and silicate remaining, and as a result, both N : P and N : Si ratios were low. The two ratios increased to about 10 : 1 and 0.45 : 1, respectively, at 20 m. Time series of vertical profiles showed that the leftover phosphate continued to be removed, resulting in additional phosphorus storage by phytoplankton. There were various shapes of vertical profiles of N : P and at the nutricline it changed quickly in response to mixing events. A field incubation of seawater also demonstrated the sequential uptake of nitrate (the most limiting nutrient) and then phosphate and silicate (the non-limiting nutrients). This sequential uptake strategy allows phytoplankton to acquire additional cellular phosphorus and silicon when they are available and wait for nitrogen to become available through frequent mixing of nitrate (or pulsed regenerated ammonium). Thus, phytoplankton show variability of nutrient stoichiometry and are capable of maintaining high productivity by taking advantage of vigorous mixing regimes. To our knowledge, this is the first study to show the dynamics of continuous vertical profiles of N : P and N : Si ratios and to examine the responses of phytoplankton to nutrients supplied naturally by mixing events. The continuous nutrient profiles provided insight into the in situ dynamics of nutrient stoichiometry in the water column and the transient status of nutrient stoichiometry of phytoplankton in the field.


2008 ◽  
Vol 23 (1-2) ◽  
pp. 39
Author(s):  
G. Verdugo-Díaz ◽  
R. Cervantes Duarte ◽  
M. O. Albáñez-Lucero

Primary productivity estimation in two seamounts in the southern Gulf of California, México Vertical profiles of temperature and natural fluorescence from 100 m deep were made during February 2005. Water transparency was measured using Secchi’s disc, as well samples of superficial water and at maximum of fluorescence deep were collected to analyze inorganic nutrients. In “El Bajo Espiritu Santo” temperature (20 °C at surface) diminished gradually with depth, without significant stratification.Primary productivity shows superficial values close to 6 mg C m-3 h-1, recahing undetectable values at 20 m of depth. In “El Bajo Gorda” surface temperature reached 22 °C and the water column shows a thermocline between 35 m and 45 m of depth. The profiles of primary productivity presented a subsurface maximum (approximately 2 mg C m-3 h-1) associated with the thermocline.


2020 ◽  
Author(s):  
Ralf Oeser ◽  
Friedhelm von Blanckenburg

<p>Water flow as well as the presence and growth rate of land plants are commonly thought to present drivers of rock weathering. While plants are indeed key players in weathering, the quantitative evaluation of biota on total abiotic and biotic weathering processes remains vague.</p><p>Here, we report on weathering rates and nutrient uptake along the “EarthShape” climate and vegetation gradient in the Chilean Coastal Cordillera. The hypothesis we evaluated is whether weathering rate and degree does increase from north to south along the EarthShape climate gradient and whether the increase in biomass growth rate along this gradient is accommodated by additional nutrient-supply induced through weathering. We quantified the bio-available fraction of nutritive elements in regolith and we measured <sup>87</sup>Sr/<sup>86</sup>Sr isotope ratios in the different compartments of the Earth’s Critical Zone (bedrock, regolith, bio-available fraction in saprolite and soil, and vegetation) to identify the sources of mineral nutrients to plants. We were thus quantified gains and losses of nutritive elements in and out of these ecosystems and to quantify nutrient recycling.</p><p>We find that despite the increase in biomass growth the weathering rate is relatively uniform along the gradient. Instead of accelerating biogenic weathering ecosystems with high productivity rely on efficient recycling between plants and soil to sustain their nutrition. Thus, the organic nutrient pathway (between plants and litter on the foerst floor) intensifies, whereas the geogenic nutrient pathway (from minerals to plant) remains steady despite increasing precipitation and primary productivity. We further speculate that the presence of plants might compensate weathering downward by regulating the hydrological cycle, fostering secondary-mineral formation, and a microbial community specializing on nutrient-recycling rather than nutrient-acquisition through weathering.</p>


2019 ◽  
Author(s):  
Michael Stukel ◽  
Thomas Kelly

Thorium-234 (234Th) is a powerful tracer of particle dynamics and the biological pump in the surface ocean; however, variability in carbon:thorium ratios of sinking particles adds substantial uncertainty to estimates of organic carbon export. We coupled a mechanistic thorium sorption and desorption model to a one-dimensional particle sinking model that uses realistic particle settling velocity spectra. The model generates estimates of 238U-234Th disequilibrium, particulate organic carbon concentration, and the C:234Th ratio of sinking particles, which are then compared to in situ measurements from quasi-Lagrangian studies conducted on six cruises in the California Current Ecosystem. Broad patterns observed in in situ measurements, including decreasing C:234Th ratios with depth and a strong correlation between sinking C:234Th and the ratio of vertically-integrated particulate organic carbon (POC) to vertically-integrated total water column 234Th, were accurately recovered by models assuming either a power law distribution of sinking speeds or a double log normal distribution of sinking speeds. Simulations suggested that the observed decrease in C:234Th with depth may be driven by preferential remineralization of carbon by particle-attached microbes. However, an alternate model structure featuring complete consumption and/or disaggregation of particles by mesozooplankton (e.g. no preferential remineralization of carbon) was also able to simulate decreasing C:234Th with depth (although the decrease was weaker), driven by 234Th adsorption onto slowly sinking particles. Model results also suggest that during bloom decays C:234Th ratios of sinking particles should be higher than expected (based on contemporaneous water column POC), because high settling velocities minimize carbon remineralization during sinking.


2020 ◽  
Vol 16 (6) ◽  
pp. 928-933
Author(s):  
Jujjavarapu S. Eswari

Objective: Biosurfactants are the surface active agents which are used for the reduction of surface and interfacial tensions of liquids. Rhamnolipids are the surfactants produced by Pseudomonas aeruginosa. It requires minimum nutrition for its growth as it can also grow in distilled water. The rhamnolipids produced by Pseudomonas aeruginosa are extra-cellular glycolipids consisting of L-rhamnose and 3-hydroxyalkanoic acid. Methods: The fed-batch method for the rhamnolipid production is considered in this study to know the influence of the carbon, nitrogen, phosphorous substrates as growth-limiting nutrients. Pulse feeding is employed for limiting nutrient addition at particular time interval to obtain maximum rhamnolipid formation from Pseudomonas aeruginosa compared with the batch process. Results: Out of 3 fed batch strategies constant glucose fed batch strategy shows best and gave maximum rhamnolipid concentration of 0.134 g/l.


2017 ◽  
Vol 75 (1) ◽  
pp. 30-42 ◽  
Author(s):  
Louis Legendre ◽  
Richard B Rivkin ◽  
Nianzhi Jiao

Abstract This “Food for Thought” article examines the potential uses of several novel scientific and technological developments, which are currently available or being developed, to significantly advance or supplement existing experimental approaches to study water-column biogeochemical processes (WCB-processes). After examining the complementary roles of observation, experiments and numerical models to study WCB-processes, we focus on the main experimental approaches of free-water in situ experiments, and at-sea and on-land meso- and macrocosms. We identify some of the incompletely resolved aspects of marine WCB-processes, and explore advanced experimental approaches that could be used to reduce their uncertainties. We examine three such approaches: free-water experiments of lengthened duration using bioArgo floats and gliders, at-sea mesocosms deployed several 100s m below the sea-surface using new biogeochemical sensors, and 50 m-tall on-land macrocosms. These approaches could lead to significant progress in concepts related to marine WCB-processes.


2015 ◽  
Vol 15 (12) ◽  
pp. 7085-7102 ◽  
Author(s):  
N. L. Wagner ◽  
C. A. Brock ◽  
W. M. Angevine ◽  
A. Beyersdorf ◽  
P. Campuzano-Jost ◽  
...  

Abstract. Vertical profiles of submicron aerosol from in situ aircraft-based measurements were used to construct aggregate profiles of chemical, microphysical, and optical properties. These vertical profiles were collected over the southeastern United States (SEUS) during the summer of 2013 as part of two separate field studies: the Southeast Nexus (SENEX) study and the Study of Emissions and Atmospheric Composition, Clouds, and Climate Coupling by Regional Surveys (SEAC4RS). Shallow cumulus convection was observed during many profiles. These conditions enhance vertical transport of trace gases and aerosol and create a cloudy transition layer on top of the sub-cloud mixed layer. The trace gas and aerosol concentrations in the transition layer were modeled as a mixture with contributions from the mixed layer below and the free troposphere above. The amount of vertical mixing, or entrainment of air from the free troposphere, was quantified using the observed mixing ratio of carbon monoxide (CO). Although the median aerosol mass, extinction, and volume decreased with altitude in the transition layer, they were ~10 % larger than expected from vertical mixing alone. This enhancement was likely due to secondary aerosol formation in the transition layer. Although the transition layer enhancements of the particulate sulfate and organic aerosol (OA) were both similar in magnitude, only the enhancement of sulfate was statistically significant. The column integrated extinction, or aerosol optical depth (AOD), was calculated for each individual profile, and the transition layer enhancement of extinction typically contributed less than 10 % to the total AOD. Our measurements and analysis were motivated by two recent studies that have hypothesized an enhanced layer of secondary aerosol aloft to explain the summertime enhancement of AOD (2–3 times greater than winter) over the southeastern United States. The first study attributes the layer aloft to secondary organic aerosol (SOA) while the second study speculates that the layer aloft could be SOA or secondary particulate sulfate. In contrast to these hypotheses, the modest enhancement we observed in the transition layer was not dominated by OA and was not a large fraction of the summertime AOD.


Sign in / Sign up

Export Citation Format

Share Document