scholarly journals Characterizing ecosystem-atmosphere interactions from short to interannual time scales

2007 ◽  
Vol 4 (5) ◽  
pp. 743-758 ◽  
Author(s):  
M. D. Mahecha ◽  
M. Reichstein ◽  
H. Lange ◽  
N. Carvalhais ◽  
C. Bernhofer ◽  
...  

Abstract. Characterizing ecosystem-atmosphere interactions in terms of carbon and water exchange on different time scales is considered a major challenge in terrestrial biogeochemical cycle research. The respective time series currently comprise an observation period of up to one decade. In this study, we explored whether the observation period is already sufficient to detect cross-relationships between the variables beyond the annual cycle, as they are expected from comparable studies in climatology. We investigated the potential of Singular System Analysis (SSA) to extract arbitrary kinds of oscillatory patterns. The method is completely data adaptive and performs an effective signal to noise separation. We found that most observations (Net Ecosystem Exchange, NEE, Gross Primary Productivity, GPP, Ecosystem Respiration, Reco, Vapor Pressure Deficit, VPD, Latent Heat, LE, Sensible Heat, H, Wind Speed, u, and Precipitation, P) were influenced significantly by low-frequency components (interannual variability). Furthermore, we extracted a set of nontrivial relationships and found clear seasonal hysteresis effects except for the interrelation of NEE with Global Radiation (Rg). SSA provides a new tool for the investigation of these phenomena explicitly on different time scales. Furthermore, we showed that SSA has great potential for eddy covariance data processing, since it can be applied as a novel gap filling approach relying on the temporal correlation structure of the time series structure only.

2007 ◽  
Vol 4 (3) ◽  
pp. 1405-1435
Author(s):  
M. D. Mahecha ◽  
M. Reichstein ◽  
H. Lange ◽  
N. Carvalhais ◽  
C. Bernhofer ◽  
...  

Abstract. Characterizing ecosystem-atmosphere interactions in terms of carbon and water exchange on different time scales is considered a major challenge in terrestrial biogeochemical cycle research. The respective time series are now partly comprising an observation period of one decade. In this study, we explored whether the observation period is already sufficient to detect cross relationships of the variables beyond the annual cycle as they are expected from comparable studies in climatology. We explored the potential of Singular System Analysis (SSA) to extract arbitrary kinds of oscillatory patterns. The method is completely data adaptive and performs an effective signal to noise separation. We found that most observations (NEE, GPP, Reco, VPD, LE, H, u, P) were influenced significantly by low frequency components (interannual variability). Furthermore we extracted a set of nonlinear relationships and found clear annual hysteresis effects except for the NEE-Rg relationship which turned out to be the sole linear relationship in the observation space. SSA provides a new tool to investigate these phenomena explicitly on different time scales. Furthermore, we showed that SSA has great potential for eddy covariance data processing since it can be applied as novel gap filling approach relying on the temporal time series structure only.


2022 ◽  
Author(s):  
Olivier Delage ◽  
Thierry Portafaix ◽  
Hassan Bencherif ◽  
Alain Bourdier ◽  
Emma Lagracie

Abstract. Most observational data sequences in geophysics can be interpreted as resulting from the interaction of several physical processes at several time and space scales. As a consequence, measurements time series have often characteristics of non-linearity and non-stationarity and thereby exhibit strong fluctuations at different time-scales. The variability analysis of a time series consists in decomposing it into several mode of variability, each mode representing the fluctuations of the original time series at a specific time-scale. Such a decomposition enables to obtain a time-frequency representation of the original time series and turns out to be very useful to estimate the dimensionality of the underlying dynamics. Decomposition techniques very well suited to non-linear and non-stationary time series have recently been developed in the literature. Among the most widely used of these technics are the empirical mode decomposition (EMD) and the empirical wavelet transformation (EWT). The purpose of this paper is to present a new adaptive filtering method that combines the advantages of the EMD and EWT technics, while remaining close to the dynamics of the original signal made of atmospheric observations, which means reconstructing as close as possible to the original time series, while preserving its variability at different time scales.


2008 ◽  
Vol 26 (3) ◽  
pp. 441-446 ◽  
Author(s):  
J. L. Borkowski

Abstract. Solar UV radiation variability in the period 1976–2006 is discussed with respect to the relative changes in the solar global radiation, ozone content, and cloudiness. All the variables were decomposed into separate components, representing variations of different time scales, using wavelet multi-resolution decomposition. The response of the UV radiation to the changes in the solar global radiation, ozone content, and cloudiness depends on the time scale, therefore, it seems reasonable to model separately the relation between UV and explanatory variables at different time scales. The wavelet components of the UV series are modelled and summed to obtain the fit of observed series. The results show that the coarser time scale components can be modelled with greater accuracy than fine scale components and the fitted values calculated by this method are in better agreement with observed values than values calculated by the regression method, in which variables were not decomposed. The residual standard error in the case of modelling with the use of wavelets is reduced by 14% in comparison to the regression method without decomposition.


10.29007/gbqh ◽  
2018 ◽  
Author(s):  
Roberto Ranzi ◽  
Massimo Tomirotti ◽  
Michele Brunetti ◽  
Alice Crespi ◽  
Maurizio Maugeri

A recovery of ancient records of the Como Lake water levels at the Fortilizio in Lecco hydrometric station enabled the reconstruction of a time series of daily water level and runoff from the Como Lake spanning the 1845-2014 period. In parallel, the monthly areal precipitation at the Adda river catchment scale was estimated for the same 170 years- long period. This time series, which is one of the longest available for Italian riverbasins will support analyses of the reasons of changes in the runoff regime in response to climatic and anthropogenic changes. A comparison of the two series applying the Mann- Kendall, Spearman and Theil-Sen trend tests, shows a decline, in the long term, of runoff and a more significant one of precipitation. Because some changes in the operation at the outlet of the Como Lake occurred after 1946 and also in the storage capacity of the upstream reservoirs the time series was splitted in two periods, before and after 1946. The results of the statistical tests for both precipitation and runoff in three time periods are consistent, but only for the time series of annual runoff the decline is statistically significant with 5% significance level. To analyse if changes occurred at different time scales the wavelet transform was applied to the daily runoff series. Finally the Fourier power spectrum of the the daily runoff data shows a signal of higher energy corresponding to a period between 11 and 13 years, close to the sunspots cycle period, and its significance is under investigation.


2021 ◽  
Author(s):  
Andrey Gavrilov ◽  
Aleksei Seleznev ◽  
Dmitry Mukhin ◽  
Alexander Feigin

<p>The problem of modeling interaction between processes with different time scales is very important in geoscience. In this report, we propose a new form of empirical evolution operator model based on the analysis of multiple time series representing processes with different time scales. We assume that the time series are given on the same time interval.</p><p>To construct the model, we extend the previously developed general form of nonlinear stochastic model based on artificial neural networks and designed for the case of time series with constant sampling interval [1]. This sampling interval is related to the main time scale of the process under consideration, which is described by the deterministic component of the model, while the faster time scales are modeled by its stochastic component, possibly depending on the system’s state. This model also includes slower processes in the form of weak time-dependence, as well as external forcing. The structure of the model is optimized using Bayesian approach [1]. The model has proven its efficiency in a number of applications [2-4].</p><p>The idea of modeling time series with different time scales is to formulate the above-described model individually for each time scale, and then to include the parameterized influence of the other time scales in it. Particularly, the influence of “slower” time series is included in the form of parameter trends, and the influence of “faster” time series is included by time-averaging their statistics. The algorithm and first results of comparison between the new model and the model without cross-interactions will be discussed.</p><p>The work was supported by the Russian Science Foundation (Grant No. 20-62-46056).</p><p>1. Gavrilov, A., Loskutov, E., & Mukhin, D. (2017). Bayesian optimization of empirical model with state-dependent stochastic forcing. Chaos, Solitons & Fractals, 104, 327–337. http://doi.org/10.1016/j.chaos.2017.08.032</p><p>2. Mukhin, D., Kondrashov, D., Loskutov, E., Gavrilov, A., Feigin, A., & Ghil, M. (2015). Predicting Critical Transitions in ENSO models. Part II: Spatially Dependent Models. Journal of Climate, 28(5), 1962–1976. http://doi.org/10.1175/JCLI-D-14-00240.1</p><p>3. Gavrilov, A., Seleznev, A., Mukhin, D., Loskutov, E., Feigin, A., & Kurths, J. (2019). Linear dynamical modes as new variables for data-driven ENSO forecast. Climate Dynamics, 52(3–4), 2199–2216. http://doi.org/10.1007/s00382-018-4255-7</p><p>4. Mukhin, D., Gavrilov, A., Loskutov, E., Kurths, J., & Feigin, A. (2019). Bayesian Data Analysis for Revealing Causes of the Middle Pleistocene Transition. Scientific Reports, 9(1), 7328. http://doi.org/10.1038/s41598-019-43867-3</p>


2017 ◽  
Author(s):  
Ankit Agarwal ◽  
Norbert Marwan ◽  
Maheswaran Rathinasamy ◽  
Bruno Merz ◽  
Jürgen Kurths

Abstract. The temporal dynamics of climate processes are spread across different time scales and, as such, the study of these processes only at one selected time scale might not reveal the complete mechanisms and interactions within and between the (sub-) processes. For capturing the nonlinear interactions between climatic events, the method of event synchronization has found increasing attention recently. The main drawback with the present estimation of event synchronization is its restriction to analyse the time series at one reference time scale only. The study of event synchronization at multiple scales would be of great interest to comprehend the dynamics of the investigated climate processes. In this paper, wavelet based multi-scale event synchronization (MSES) method is proposed by combining the wavelet transform and event synchronization. Wavelets are used extensively to comprehend multi-scale processes and the dynamics of processes across various time scales. The proposed method allows the study of spatio-temporal patterns across different time scales. The method is tested on synthetic and real-world time series in order to check its replicability and applicability. The results indicate that MSES is able to capture relationships that exist between processes at different time scales.


Sign in / Sign up

Export Citation Format

Share Document