scholarly journals Modelling of UV radiation variations at different time scales

2008 ◽  
Vol 26 (3) ◽  
pp. 441-446 ◽  
Author(s):  
J. L. Borkowski

Abstract. Solar UV radiation variability in the period 1976–2006 is discussed with respect to the relative changes in the solar global radiation, ozone content, and cloudiness. All the variables were decomposed into separate components, representing variations of different time scales, using wavelet multi-resolution decomposition. The response of the UV radiation to the changes in the solar global radiation, ozone content, and cloudiness depends on the time scale, therefore, it seems reasonable to model separately the relation between UV and explanatory variables at different time scales. The wavelet components of the UV series are modelled and summed to obtain the fit of observed series. The results show that the coarser time scale components can be modelled with greater accuracy than fine scale components and the fitted values calculated by this method are in better agreement with observed values than values calculated by the regression method, in which variables were not decomposed. The residual standard error in the case of modelling with the use of wavelets is reduced by 14% in comparison to the regression method without decomposition.

2005 ◽  
Vol 71 (9) ◽  
pp. 5004-5013 ◽  
Author(s):  
Hongyan Wu ◽  
Kunshan Gao ◽  
Virginia E. Villafañe ◽  
Teruo Watanabe ◽  
E. Walter Helbling

ABSTRACT To study the impact of solar UV radiation (UVR) (280 to 400 nm) on the filamentous cyanobacterium Arthrospira (Spirulina) platensis, we examined the morphological changes and photosynthetic performance using an indoor-grown strain (which had not been exposed to sunlight for decades) and an outdoor-grown strain (which had been grown under sunlight for decades) while they were cultured with three solar radiation treatments: PAB (photosynthetically active radiation [PAR] plus UVR; 280 to 700 nm), PA (PAR plus UV-A; 320 to 700 nm), and P (PAR only; 400 to 700 nm). Solar UVR broke the spiral filaments of A. platensis exposed to full solar radiation in short-term low-cell-density cultures. This breakage was observed after 2 h for the indoor strain but after 4 to 6 h for the outdoor strain. Filament breakage also occurred in the cultures exposed to PAR alone; however, the extent of breakage was less than that observed for filaments exposed to full solar radiation. The spiral filaments broke and compressed when high-cell-density cultures were exposed to full solar radiation during long-term experiments. When UV-B was screened off, the filaments initially broke, but they elongated and became loosely arranged later (i.e., there were fewer spirals per unit of filament length). When UVR was filtered out, the spiral structure hardly broke or became looser. Photosynthetic O2 evolution in the presence of UVR was significantly suppressed in the indoor strain compared to the outdoor strain. UVR-induced inhibition increased with exposure time, and it was significantly lower in the outdoor strain. The concentration of UV-absorbing compounds was low in both strains, and there was no significant change in the amount regardless of the radiation treatment, suggesting that these compounds were not effectively used as protection against solar UVR. Self-shading, on the other hand, produced by compression of the spirals over adaptive time scales, seems to play an important role in protecting this species against deleterious UVR. Our findings suggest that the increase in UV-B irradiance due to ozone depletion not only might affect photosynthesis but also might alter the morphological development of filamentous cyanobacteria during acclimation or over adaptive time scales.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Zhiping Lu ◽  
Ming Li ◽  
Wei Zhao

We investigate the stationarity property of the accumulated Ethernet traffic series. We applied several widely used stationarity and unit root tests, such as Dickey-Fuller test and its augmented version, Phillips-Perron test, as well as the Kwiatkowski-Phillips-Schmidt-Shin test and some of its generalizations, to the assessment of the stationarity of the traffic traces at the different time scales. The quantitative results in this research provide evidence that when the time scale increases, the accumulated traffic series are more stationary.


1995 ◽  
Vol 03 (02) ◽  
pp. 591-602 ◽  
Author(s):  
PIERRE AUGER ◽  
JEAN-CHRISTOPHE POGGIALE

The aim of this work is to show that at the population level, emerging properties may occur as a result of the coupling between the fast micro-dynamics and the slow macrodynamics. We studied a prey-predator system with different time scales in a heterogeneous environment. A fast time scale is associated to the migration process on spatial patches and a slow time scale is associated to the growth and the interactions between the species. Preys go on the spatial patches on which some resources are located and can be caught by the predators on them. The efficiency of the predators to catch preys is patch-dependent. Preys can be more easily caught on some spatial patches than others. Perturbation theory is used in order to aggregate the initial system of ordinary differential equations for the patch sub-populations into a macro-system of two differential equations governing the total populations. Firstly, we study the case of a linear process of migration for which the aggregated system is formally identical to the slow part of the full system. Then, we study an example of a nonlinear process of migration. We show that under these conditions emerging properties appear at the population level.


2021 ◽  
Vol 9 ◽  
Author(s):  
Peng Li ◽  
Fan Zhang ◽  
Xiyuan Ma ◽  
Senjing Yao ◽  
Zhuolin Zhong ◽  
...  

The park integrated energy system (PIES) plays an important role in realizing sustainable energy development and carbon neutral. Furthermore, its optimization dispatch can improve the energy utilization efficiency and reduce energy systems operation cost. However, the randomness and volatility of renewable energy and the instability of load all bring challenges to its optimal operation. An optimal dispatch framework of PIES is proposed, which constructs the operation models under three different time scales, including day-ahead, intra-day and real-time. Demand response is also divided into three levels considering its response characteristics and cost composition under different time scales. The example analysis shows that the multi-time scale optimization dispatch model can not only meet the supply and demand balance of PIES, diminish the fluctuation of renewable energy and flatten load curves, but also reduce the operation cost and improve the reliability of energy systems.


2007 ◽  
Vol 4 (5) ◽  
pp. 743-758 ◽  
Author(s):  
M. D. Mahecha ◽  
M. Reichstein ◽  
H. Lange ◽  
N. Carvalhais ◽  
C. Bernhofer ◽  
...  

Abstract. Characterizing ecosystem-atmosphere interactions in terms of carbon and water exchange on different time scales is considered a major challenge in terrestrial biogeochemical cycle research. The respective time series currently comprise an observation period of up to one decade. In this study, we explored whether the observation period is already sufficient to detect cross-relationships between the variables beyond the annual cycle, as they are expected from comparable studies in climatology. We investigated the potential of Singular System Analysis (SSA) to extract arbitrary kinds of oscillatory patterns. The method is completely data adaptive and performs an effective signal to noise separation. We found that most observations (Net Ecosystem Exchange, NEE, Gross Primary Productivity, GPP, Ecosystem Respiration, Reco, Vapor Pressure Deficit, VPD, Latent Heat, LE, Sensible Heat, H, Wind Speed, u, and Precipitation, P) were influenced significantly by low-frequency components (interannual variability). Furthermore, we extracted a set of nontrivial relationships and found clear seasonal hysteresis effects except for the interrelation of NEE with Global Radiation (Rg). SSA provides a new tool for the investigation of these phenomena explicitly on different time scales. Furthermore, we showed that SSA has great potential for eddy covariance data processing, since it can be applied as a novel gap filling approach relying on the temporal correlation structure of the time series structure only.


2021 ◽  
Author(s):  
Andrey Gavrilov ◽  
Aleksei Seleznev ◽  
Dmitry Mukhin ◽  
Alexander Feigin

<p>The problem of modeling interaction between processes with different time scales is very important in geoscience. In this report, we propose a new form of empirical evolution operator model based on the analysis of multiple time series representing processes with different time scales. We assume that the time series are given on the same time interval.</p><p>To construct the model, we extend the previously developed general form of nonlinear stochastic model based on artificial neural networks and designed for the case of time series with constant sampling interval [1]. This sampling interval is related to the main time scale of the process under consideration, which is described by the deterministic component of the model, while the faster time scales are modeled by its stochastic component, possibly depending on the system’s state. This model also includes slower processes in the form of weak time-dependence, as well as external forcing. The structure of the model is optimized using Bayesian approach [1]. The model has proven its efficiency in a number of applications [2-4].</p><p>The idea of modeling time series with different time scales is to formulate the above-described model individually for each time scale, and then to include the parameterized influence of the other time scales in it. Particularly, the influence of “slower” time series is included in the form of parameter trends, and the influence of “faster” time series is included by time-averaging their statistics. The algorithm and first results of comparison between the new model and the model without cross-interactions will be discussed.</p><p>The work was supported by the Russian Science Foundation (Grant No. 20-62-46056).</p><p>1. Gavrilov, A., Loskutov, E., & Mukhin, D. (2017). Bayesian optimization of empirical model with state-dependent stochastic forcing. Chaos, Solitons & Fractals, 104, 327–337. http://doi.org/10.1016/j.chaos.2017.08.032</p><p>2. Mukhin, D., Kondrashov, D., Loskutov, E., Gavrilov, A., Feigin, A., & Ghil, M. (2015). Predicting Critical Transitions in ENSO models. Part II: Spatially Dependent Models. Journal of Climate, 28(5), 1962–1976. http://doi.org/10.1175/JCLI-D-14-00240.1</p><p>3. Gavrilov, A., Seleznev, A., Mukhin, D., Loskutov, E., Feigin, A., & Kurths, J. (2019). Linear dynamical modes as new variables for data-driven ENSO forecast. Climate Dynamics, 52(3–4), 2199–2216. http://doi.org/10.1007/s00382-018-4255-7</p><p>4. Mukhin, D., Gavrilov, A., Loskutov, E., Kurths, J., & Feigin, A. (2019). Bayesian Data Analysis for Revealing Causes of the Middle Pleistocene Transition. Scientific Reports, 9(1), 7328. http://doi.org/10.1038/s41598-019-43867-3</p>


2008 ◽  
Vol 8 (12) ◽  
pp. 3107-3118 ◽  
Author(s):  
U. Feister ◽  
J. Junk ◽  
M. Woldt ◽  
A. Bais ◽  
A. Helbig ◽  
...  

Abstract. Artificial Neural Networks (ANN) are efficient tools to derive solar UV radiation from measured meteorological parameters such as global radiation, aerosol optical depths and atmospheric column ozone. The ANN model has been tested with different combinations of data from the two sites Potsdam and Lindenberg, and used to reconstruct solar UV radiation at eight European sites by more than 100 years into the past. Special emphasis will be given to the discussion of small-scale characteristics of input data to the ANN model. Annual totals of UV radiation derived from reconstructed daily UV values reflect interannual variations and long-term patterns that are compatible with variabilities and changes of measured input data, in particular global dimming by about 1980/1990, subsequent global brightening, volcanic eruption effects such as that of Mt. Pinatubo, and the long-term ozone decline since the 1970s. Patterns of annual erythemal UV radiation are very similar at sites located at latitudes close to each other, but different patterns occur between UV radiation at sites in different latitude regions.


Acta Numerica ◽  
1992 ◽  
Vol 1 ◽  
pp. 101-139 ◽  
Author(s):  
Heinz-Otto Kreiss

In this section we discuss a very simple problem. Consider the scalar initial value problemHere ε > 0 is a small constant and a = a1 + ia2, a1, a2 real, is a complex number with |a| = 1. We can write down the solution of (1.1) explicity. It iswhereis the forced solution andis a solution of the homogeneous equationyS varies on the time scale ‘1’ while yF varies on the much faster scale 1/ε. We say that yS, yF vary on the slow and fast scale, respectively. We use also the phrase: yS and yF are the slow and the fast part of the solution, respectively.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Zhiping Lu ◽  
Ming Li ◽  
Wei Zhao

We contribute the quantitative descriptions of the large time scales for the Ethernet traffic to be Gaussian. We focus on the normality property of the accumulated traffic data under different time scales. The investigation is carried out graphically by the quantile-quantile (QQ) plots and numerically by statistical tests. The present results indicate that the larger the time scale, the more normal the Ethernet traffic.


1996 ◽  
Vol 56 (1) ◽  
pp. 45-65
Author(s):  
J. W. Edenstrasser ◽  
M. M. M. Kassab

The plasma transport equations for a weakly collisional plasma have previously been derived for four different time scales. This paper is devoted to the derivation of the plasma transport equations for the two other complementary regimes: the intermediately collisional regime (ICR) (i.e. for the case where the transit time w1 is of the same order as the collision time is of the same order as the collision time ), and the strongly collisional regime (SCR) (i.e. for the case of ) for different time scales. It is shown that the lowest-order gyromotion is unperturbed by collisions. On the Alfvén time scale, one merely obtains for both the intermediately collisional case and the strongly collisional case the single-fluid ideal MHD equations, if certain additional requirements are satisfied. On the MHD-collision time scale, one arrives at the full set of transport equations, where in both cases, contrary to the weakly collisional case, no turbulent terms are found. On the resistive diffusion timescale, one ends up with the known transport equations, with the addition of turbulent contributions.


Sign in / Sign up

Export Citation Format

Share Document