scholarly journals Laboratory measurements of nitric oxide release from forest soil with a thick organic layer under different understory types

2010 ◽  
Vol 7 (5) ◽  
pp. 1425-1441 ◽  
Author(s):  
A. Bargsten ◽  
E. Falge ◽  
K. Pritsch ◽  
B. Huwe ◽  
F. X. Meixner

Abstract. Nitric oxide (NO) plays an important role in the photochemistry of the troposphere. NO from soil contributes up to 40% to the global budget of atmospheric NO. Soil NO emissions are primarily caused by biological activity (nitrification and denitrification), that occurs in the uppermost centimeter of the soil, a soil region often characterized by high contents of organic material. Most studies of NO emission potentials to date have investigated mineral soil layers. In our study we sampled soil organic matter under different understories (moss, grass, spruce and blueberries) in a humid mountainous Norway spruce forest plantation in the Fichtelgebirge (Germany). We performed laboratory incubation and flushing experiments using a customized chamber technique to determine the response of net potential NO flux to physical and chemical soil conditions (water content and temperature, bulk density, particle density, pH, C/N ratio, organic C, soil ammonium, soil nitrate). Net potential NO fluxes (in terms of mass of N) from soil samples taken under different understories ranged from 1.7–9.8 ng m−2 s−1 (soil sampled under grass and moss cover), 55.4–59.3 ng m−2 s−1 (soil sampled under spruce cover), and 43.7–114.6 ng m−2 s−1 (soil sampled under blueberry cover) at optimum water content and a soil temperature of 10 °C. The water content for optimum net potential NO flux ranged between 0.76 and 0.8 gravimetric soil moisture for moss covered soils, between 1.0 and 1.1 for grass covered soils, 1.1 and 1.2 for spruce covered soils, and 1.3 and 1.9 for blueberry covered soils. Effects of soil physical and chemical characteristics on net potential NO flux were statistically significant (0.01 probability level) only for NH4+. Therefore, as an alternative explanation for the differences in soil biogenic NO emission we consider more biological factors like understory vegetation type, amount of roots, and degree of mycorrhization; they have the potential to explain the observed differences of net potential NO fluxes.

2010 ◽  
Vol 7 (1) ◽  
pp. 203-250 ◽  
Author(s):  
A. Bargsten ◽  
E. Falge ◽  
B. Huwe ◽  
F. X. Meixner

Abstract. Nitric oxide (NO) plays an important role in the photochemistry of the troposphere. NO from soil contributes up to 40% to the global budget of atmospheric NO. Soil NO emissions are primarily caused by biological activity (nitrification and denitrification), that occurs in the uppermost centimetres of the soil, a soil region often characterized by high contents of organic material. Most studies of NO emission potentials to date have investigated mineral soil layers. In our study we sampled soil organic matter under different understories (moss, grass, spruce and blueberries) in a humid mountainous Norway spruce forest plantation in the Fichtelgebirge (Germany). We performed laboratory incubation and fumigation experiments using a customized chamber technique to determine the response of net potential NO flux to physical and chemical soil conditions (water content and temperature, bulk density, particle density, pH, C/N ratio, organic C, soil ammonium, soil nitrate). Net potential NO fluxes (in terms of mass of N) from soils of different understories ranged from 1.7–9.8 ng m−2 s−1 (grass and moss), 55.4–59.3 ng m−2 s−1 (spruce), and 43.7–114.6 ng m−2 s−1 (blueberry) at optimum water content and a soil temperature of 10°C. The water content for optimum net potential NO flux ranged between 0.76 and 0.8 gravimetric soil moisture for moss, between 1.0 and 1.1 for grass, 1.1 and 1.2 for spruce, and 1.3 and 1.9 for blueberries. Effects of soil physical and chemical characteristics on net potential NO flux were statistically significant (0.01 probability level) only for NH4+. Therefore, the effects of biogenic factors like understory type, amount of roots, and degree of mycorrhization on soil biogenic NO emission are discussed; they have the potential to explain the observed different of net potential NO fluxes. Quantification of NO emissions from the upmost soil layer is therefore an important step to quantify soil NO emissions in ecosystems with substantial organic soil horizons.


2020 ◽  
Vol 21 (8) ◽  
Author(s):  
Muhammad Fajri ◽  
Pratiwi PRATIWI ◽  
Yosep Ruslim

Abstract. Fajri M, Pratiwi, Ruslim Y. 2020. The characteristics of Shorea macrophylla’s habitat in Tane’ Olen, Malinau District, North Kalimantan Province, Indonesia. Biodiversitas 21: 3454-3462.  Shorea macrophylla is a tree species in Tane' Olen forest area. This study analyzed the soil’s physical and chemical properties, topography, and microclimate of S. macrophylla’s habitat. A purposive method was used to select a sampling plot and to place the subplots. Soil was analyzed to determine the physical properties, i.e., texture, bulk density, porosity, and water content, and the chemical properties, i.e., pH, CEC, total N, organic C, C/N ratio, P, K , and Al saturation. Importance value index was determined for each tree species to know the species composition in the study site. Only the dominant species were presented. The soil at the study site had bulk density of 0.60-1.31 gram cm³-1, porosity 50.60%-77.35%, water content 34.88%-95.37%, and soil texture sandy clay. The chemical properties of the soil were as follows: pH was 3.6-4.8, N 0.05%-0.19%, organic C 1.40%-3.65%, P 0.41-1.22 mg 100 gr-1, K 58.68-232.55 mg 100 gr-1, and Cation Exchange Capacity (CEC) 5.35-10.81 meg 100gr -1. Slope ranged between 0 and 25%. The microclimate characteristics were as follows: temperature was 24-26.5°C, relative humidity 76-87%, and light intensity 145-750 Lm. Trees species with an IVI ≥ 10% were S. macrophylla, Madhuca spectabilis, Myristica villosa Warb, Scorodocarpus borneensis, Eugenia spp., Palaquium spp., Macaranga triloba, Syzygium inophyllum and Shorea sp. Positive associations were observed between S. macropylla and S. borneensis, Eugenia spp., Palaquium spp.. and M. triloba, and negative associations were observed between S. macropylla and M. spectabilis, M. villosa Warb, S. inophyllum, and Shorea sp. S. macrophylla grows on riversides with flat and gentle topography, acidic soil, and lower fertility but with suitable microclimate. This species can be recommended to be planted in degraded tropical forest areas but the microclimate and soil properties should be taken into account.


Silva Fennica ◽  
2019 ◽  
Vol 53 (2) ◽  
Author(s):  
Matti Sirén ◽  
Jari Ala-Ilomäki ◽  
Harri Lindeman ◽  
Jori Uusitalo ◽  
Kalle Kiilo ◽  
...  

Factors affecting soil disturbance caused by harvester and forwarder were studied on mid-grained soils in Finland. Sample plots were harvested using a one-grip harvester. The harvester operator processed the trees outside the strip roads, and the remaining residues were removed to exclude the covering effect of residues. Thereafter, a loaded forwarder made up to 5 passes over the sample plots. The average rut depth after four machine passes was positively correlated to the volumetric water content at a depth of 0–10 cm in mineral soil, as well as the thickness of the organic layer and the harvester rut depth, and negatively correlated with penetration resistance at depths of both 0–20 cm and 5–40 cm. We present 5 models to predict forwarder rut depth. Four include the cumulative mass driven over a measurement point and combinations of penetration resistance, water content and the depth of organic layer. The fifth model includes harvester rut depth and the cumulative overpassed mass and provided the best fit. Changes in the penetration resistance (PR) were highest at depths of 20–40 cm. Increase in BD and VWC decreased PR, which increased with total overdriven mass. After four to five machine passes PR values started to stabilize.


2008 ◽  
Vol 5 (1) ◽  
pp. 271-296
Author(s):  
J. Kurbatova ◽  
C. Li ◽  
A. Varlagin ◽  
X. Xiao ◽  
N. Vygodskaya

Abstract. Net ecosystem carbon exchange (NEE) were measured with eddy covariance method for two adjacent forests located at the southern boundary of European taiga in Russia in 1999–2004. The two spruce forests shared similar vegetation composition but differed in soil conditions. The wet spruce forest (WSF) possessed a thick peat layer (60 cm) with a high water table seasonally close to or above the soil surface. The dry spruce forest (DSF) had a relatively thin organic layer (5 cm) with a deep water table (>60 cm). The measured NEE fluxes (2000 and −1440 kg C ha−1 yr−1 for WSF and DSF, respectively) indicated that WSF was a source while DSF a sink of atmospheric carbon dioxide during the experimental years. A process-based model, Forest-DNDC, was employed in the study to interpret the observations. The modeled NEE fluxes were 1800 and −2200 kg C ha−1 yr−1 for WSF and DSF, respectively, which were comparable with the observations. The modeled data indicated that WSF and DSF had similar rates of photosynthesis and plant autotrophic respiration but differed in soil heterotrophic respiration. The simulations resulted in a hypothesis that the water table fluctuation at WSF could play a key role in determining the negative C balance in the ecosystem. A sensitivity test was conducted by running Forest-DNDC with varied water table scenarios for WSF. The results proved that the NEE fluxes from WSF were highly sensitive to the water table depth. When the water table dropped, the length of flooding season became shorter and more organic matter in the soil profile suffered from rapid decomposition that converted the ecosystem into a source atmospheric C. The conclusion from this modeling study could be applicable for a wide range of wetland and forest ecosystems that have accumulated soil organic C while face hydrological changes under certain climatic or land-use change scenarios.


1996 ◽  
Vol 26 (7) ◽  
pp. 1266-1272 ◽  
Author(s):  
W.Z. Huang ◽  
J.J. Schoenau

The purpose of this study was to characterize the quantity, distribution, and variance of water-soluble organic C (WSOC) in a soil under trembling aspen (Populustremuloides Michx.) in the southern boreal forest of Canada. WSOC was determined monthly from May to October 1994 in the forest floor horizons (L, F, H) and mineral soil (Ae) of an aspen stand in Prince Albert National Park, Saskatchewan. The concentration of WSOC varied considerably with profile depth, but varied little among the slope positions and aspects. The L horizon had the highest WSOC concentration (425–8690 mg•kg−1 ovendried soil), followed by the F, H, and Ae horizons. The concentration of WSOC in the Ae horizon was significantly related to the concentration in forest floor horizons above. Water-soluble organic C in the Ae horizon likely was derived from the overlying organic layer by leaching. In a laboratory incubation, the rate of WSOC release (the net result of release and uptake) during incubation decreased continuously over time, but in the field, the rate of WSOC release decreased slightly early in the growing season, but increased later in the season as new litter fall reached the forest floor. This indicates that litter fall is a major factor in the replenishment of WSOC in aspen forest stands.


Soil Research ◽  
2000 ◽  
Vol 38 (5) ◽  
pp. 1017 ◽  
Author(s):  
A. Möller ◽  
K. Kaiser ◽  
W. Amelung ◽  
C. Niamskul ◽  
S. Udomsri ◽  
...  

Transformation of soil organic phosphorus (SOP) is linked with the transformation of soil organic carbon (SOC). Yet, it is uncertain to which SOC structures the cycling of SOP is related, especially in tropical environments. To clarify this issue, we determined the vertical distribution of extractable C and P chemical structures in 4 soil profiles using solution 13C- and 31P-nuclear magnetic resonance (NMR) spectroscopy after extraction with 0.1 M NaOH/0.4 M NaF (1 : 1). Soils were from a cabbage cultivation with annual burning of weeds, a Pinus reforestation, a secondary forest, and a primary forest in northern Thailand. For all profiles, signals due to O-alkyl and carbonyl C dominated the 13C-NMR spectra (up to 50 and 22% of total spectral area, respectively). The proportions of alkyl and aryl C decreased, whereas carbonyl and O-alkyl C increased with soil depth. Sharp resonances at 135 and 177 ppm appeared in spectra of subsoil horizons. They indicated mellitic acid, an end-product of the oxidation of charred plant residues. The SOP forms comprised mainly orthophosphate diesters in the organic layer of the forests, whereas in the mineral horizons orthophosphate monoesters dominated the chemical composition of extractable SOP. The relationships between SOC and SOP forms in the organic floor layers of the forests were clearly different from those in the mineral soil horizons, indicating changed SOM dynamics upon contact with soil minerals. In the forest mineral soils, significant correlations between monoester-P and O-alkyl C (R = 0.84, P < 0.001) were found. Diester-P, teichoic acids, and phosphonates were positively correlated with aromatic C and negatively with O-alkyl C. At the same time, teichoic acids and phosphonates were positively correlated with short range-ordered Al and Fe oxide phases. These findings can be explained through an increasing microbial decay of aryl C and diester-P compounds that may be less effectively stabilised at lower depths.


Land ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1060
Author(s):  
Azadeh Khoramizadeh ◽  
Meghdad Jourgholami ◽  
Mohammad Jafari ◽  
Rachele Venanzi ◽  
Farzam Tavankar ◽  
...  

In this study an attempt was made to assess how different mulches affect the soil environment. In particular, different organic mulches such as leaf litter, straw and sawdust were tested in order to assess their capacities to amend the soil conditions. These analyses were carried out in the Hyrcanian mixed broadleaved forest. Organic mulches can compensate the litter layer loss on compaction-induced soil and accelerate the restoration process of soil properties, which takes from a few years to several decades without mulching. However, comprehensive knowledge on the effects of organic mulch on soil quality in terms of compaction-induced soil in the scientific literature is still scarce and inadequate. The main aim of the study was to examine the effects of three organic mulches (leaf litter, straw and sawdust) on the restoration of forestry vehicle-induced soil properties in the skid trail over a 2-year period. The results showed as the values of soil physical and chemical properties in litter, straw and sawdust treatments were significantly restored as compared with the values in the untreated soil. In general, leaf litter supplies nutrients at higher rates than the straw and sawdust mulches. However, according to the current results, a 2-year period is not enough to return the soil physical and chemical properties to pre-traffic levels. Furthermore, the present study shows that organic mulch spread on the surface of mineral soil in the skid trails after machine traffic acts as a fertilizer to accelerate the decomposition of organic matter.


2021 ◽  
Vol 11 ◽  
Author(s):  
Taniya Roy Chowdhury ◽  
Erin C. Berns ◽  
Ji-Won Moon ◽  
Baohua Gu ◽  
Liyuan Liang ◽  
...  

Warming temperatures in continuous permafrost zones of the Arctic will alter both hydrological and geochemical soil conditions, which are strongly linked with heterotrophic microbial carbon (C) cycling. Heterogeneous permafrost landscapes are often dominated by polygonal features formed by expanding ice wedges: water accumulates in low centered polygons (LCPs), and water drains outward to surrounding troughs in high centered polygons (HCPs). These geospatial differences in hydrology cause gradients in biogeochemistry, soil C storage potential, and thermal properties. Presently, data quantifying carbon dioxide (CO2) and methane (CH4) release from HCP soils are needed to support modeling and evaluation of warming-induced CO2 and CH4 fluxes from tundra soils. This study quantifies the distribution of microbial CO2 and CH4 release in HCPs over a range of temperatures and draws comparisons to previous LCP studies. Arctic tundra soils were initially characterized for geochemical and hydraulic properties. Laboratory incubations at −2, +4, and +8°C were used to quantify temporal trends in CO2 and CH4 production from homogenized active layer organic and mineral soils in HCP centers and troughs, and methanogen abundance was estimated from mcrA gene measurements. Results showed that soil water availability, organic C, and redox conditions influence temporal dynamics and magnitude of gas production from HCP active layer soils during warming. At early incubation times (2–9 days), higher CO2 emissions were observed from HCP trough soils than from HCP center soils, but increased CO2 production occurred in center soils at later times (&gt;20 days). HCP center soils did not support methanogenesis, but CH4-producing trough soils did indicate methanogen presence. Consistent with previous LCP studies, HCP organic soils showed increased CO2 and CH4 production with elevated water content, but HCP trough mineral soils produced more CH4 than LCP mineral soils. HCP mineral soils also released substantial CO2 but did not show a strong trend in CO2 and CH4 release with water content. Knowledge of temporal and spatial variability in microbial C mineralization rates of Arctic soils in response to warming are key to constraining uncertainties in predictive climate models.


2010 ◽  
Vol 02 (03n04) ◽  
pp. 163-184 ◽  
Author(s):  
SAHAR HEMMATI ◽  
BEHROUZ GATMIRI ◽  
YU-JUN CUI ◽  
MARC VINCENT

Ground settlement can damage light buildings supported by shallow foundations through cracking. The prediction and modeling of tree roots effect on soil water content and consequently the soil settlements needs a comprehensive analysis of the interactions between tree roots, soil, and water. Root water uptake by trees depends on soil conditions, climatic parameters, and vegetation type. A two-dimensional root-water-uptake model is implemented in a fully coupled thermo-hydro-mechanic finite element program, θ-STOCK. Evapotranspiration from the soil surface covered by grasses is calculated using energy balance and water balance on the surface of soil. The tree roots are modeled as sink terms which are distributed vertically for homogeneous canopy such as forests, or laterally in the case of single tree or a row of trees. The distribution of sink term depends of geometry of root zone and type of canopy. Two case studies are used for verification of implemented model by comparing the modeling results with the measured water content reduction in the zones influenced by tree roots. The soil settlements due to these water content reductions are also calculated.


2021 ◽  
Vol 13 (7) ◽  
pp. 3617
Author(s):  
Agnieszka Medyńska-Juraszek ◽  
Agnieszka Latawiec ◽  
Jolanta Królczyk ◽  
Adam Bogacz ◽  
Dorota Kawałko ◽  
...  

Biochar application is reported as a method for improving physical and chemical soil properties, with a still questionable impact on the crop yields and quality. Plant productivity can be affected by biochar properties and soil conditions. High efficiency of biochar application was reported many times for plant cultivation in tropical and arid climates; however, the knowledge of how the biochar affects soils in temperate climate zones exhibiting different properties is still limited. Therefore, a three-year-long field experiment was conducted on a loamy Haplic Luvisol, a common arable soil in Central Europe, to extend the laboratory-scale experiments on biochar effectiveness. A low-temperature pinewood biochar was applied at the rate of 50 t h−1, and maize was selected as a tested crop. Biochar application did not significantly impact the chemical soil properties and fertility of tested soil. However, biochar improved soil physical properties and water retention, reducing plant water stress during hot dry summers, and thus resulting in better maize growth and higher yields. Limited influence of the low-temperature biochar on soil properties suggests the crucial importance of biochar-production technology and biochar properties on the effectiveness and validity of its application in agriculture.


Sign in / Sign up

Export Citation Format

Share Document