scholarly journals Projected pH reductions by 2100 might put deep North Atlantic biodiversity at risk

2014 ◽  
Vol 11 (6) ◽  
pp. 8607-8634 ◽  
Author(s):  
M. Gehlen ◽  
R. Séférian ◽  
D. O. B. Jones ◽  
T. Roy ◽  
R. Roth ◽  
...  

Abstract. This study aims at evaluating the potential for impacts of ocean acidification on North Atlantic deep-sea ecosystems in response to IPCC AR5 Representative Concentration Pathways (RCP). Deep-sea biota is likely highly vulnerable to changes in seawater chemistry and sensitive to moderate excursions in pH. Here we show, from seven fully-coupled Earth system models, that for three out of four RCPs over 17% of the seafloor area below 500 m depth in the North Atlantic sector will experience pH reductions exceeding −0.2 units by 2100. Increased stratification in response to climate change partially alleviates the impact of ocean acidification on deep benthic environment. We report major potential consequences of pH reductions for deep-sea biodiversity hotspots, such as seamounts and canyons. By 2100 and under the high CO2 scenario RCP8.5 pH reductions exceeding −0.2, (respectively −0.3) units are projected in close to 23% (~ 15%) of North Atlantic deep-sea canyons and ~ 8% (3%) of seamounts – including seamounts proposed as sites of marine protected areas. The spatial pattern of impacts reflects the depth of the pH perturbation and does not scale linearly with atmospheric CO2 concentration. Impacts may cause negative changes of the same magnitude or exceeding the current target of 10% of preservation of marine biomes set by the convention on biological diversity implying that ocean acidification may offset benefits from conservation/management strategies relying on the regulation of resource exploitation.

2014 ◽  
Vol 11 (23) ◽  
pp. 6955-6967 ◽  
Author(s):  
M. Gehlen ◽  
R. Séférian ◽  
D. O. B. Jones ◽  
T. Roy ◽  
R. Roth ◽  
...  

Abstract. This study aims to evaluate the potential for impacts of ocean acidification on North Atlantic deep-sea ecosystems in response to IPCC AR5 Representative Concentration Pathways (RCPs). Deep-sea biota is likely highly vulnerable to changes in seawater chemistry and sensitive to moderate excursions in pH. Here we show, from seven fully coupled Earth system models, that for three out of four RCPs over 17% of the seafloor area below 500 m depth in the North Atlantic sector will experience pH reductions exceeding −0.2 units by 2100. Increased stratification in response to climate change partially alleviates the impact of ocean acidification on deep benthic environments. We report on major pH reductions over the deep North Atlantic seafloor (depth >500 m) and at important deep-sea features, such as seamounts and canyons. By 2100, and under the high CO2 scenario RCP8.5, pH reductions exceeding −0.2 (−0.3) units are projected in close to 23% (~15%) of North Atlantic deep-sea canyons and ~8% (3%) of seamounts – including seamounts proposed as sites of marine protected areas. The spatial pattern of impacts reflects the depth of the pH perturbation and does not scale linearly with atmospheric CO2 concentration. Impacts may cause negative changes of the same magnitude or exceeding the current target of 10% of preservation of marine biomes set by the convention on biological diversity, implying that ocean acidification may offset benefits from conservation/management strategies relying on the regulation of resource exploitation.


2022 ◽  
pp. 748-763
Author(s):  
Ashok K. Rathoure ◽  
Unnati Rajendrakumar Patel

Many studies in recent years have investigated the effects of climate change on the future of biodiversity. In this chapter, the authors first examined the different possible effects of climate change that can operate at individual, population, species, community, ecosystem, notably showing that species can respond to climate challenges by shifting their climatic change. Climate change is one of the most important global environmental challenges that affect all the natural ecosystems of the world. Due to the fragile environment, mountain ecosystems are the most vulnerable to the impact of climate change. Climatic change will affect vegetation, humans, animals, and ecosystem that will impact on biodiversity. Mountains have been recognized as important ecosystems by the Convention on Biological Diversity. Climate change will not only threaten the biodiversity, but also affect the socio-economic condition of the indigenous people of the state. Various activities like habitat loss, deforestation, and exploitation amplify the impact of climate change on biodiversity.


2020 ◽  
Author(s):  
Louise McRae ◽  
Robin Freeman ◽  
Jonas Geldmann ◽  
Grace B. Moss ◽  
Louise Kjær-Hansen ◽  
...  

AbstractThe sustainable use of wildlife is a core aspiration of multi-lateral conservation policy but is the subject to intense debate in the scientific literature. We use a global data set of over 11,000 population time-series to derive indices of ‘used’ and ‘unused’ species and assess global and regional changes in wildlife populations – principally for mammals, birds and fishes. We also assess whether ‘management’ makes a measurable difference to wildlife population trends, especially for the used species populations. Our results show that wildlife population trends globally are negative, but with used populations tending to decline more rapidly, especially in Africa and the Americas. Crucially, where used populations are managed, using a variety of mechanisms, there is a positive impact on the trend. It is therefore true that use of species can both be a driver of negative population trends, or a driver of species recovery, with numerous species and population specific case examples making up these broader trends. This work is relevant to the evidence base for the IPBES Sustainable Use Assessment, and to the development of indicators of sustainable use of species under the post-2020 Global Biodiversity Framework being developed under the Convention on Biological Diversity.


2021 ◽  
Vol 8 ◽  
Author(s):  
Nancy L. Shackell ◽  
David M. Keith ◽  
Heike K. Lotze

The United Nations Convention on Biological Diversity was established in 1993. Canada is a signatory nation that has adopted, and exceeded, the UN Aichi biodiversity target to protect 10% of coastal and marine areas through marine protected areas or “other effective area-based conservation measures” (OECMs) by 2020. However, the science of OECMs as contributors to biodiversity conservation is relatively young and their definition and efficacy testing continue to evolve. Here, we examine whether areas closed to fishing on the Scotian Shelf in Atlantic Canada, where the groundfish community had collapsed in the early 1990s, have the potential to serve as OECMs for groundfish recovery. Using long-term research survey data, we show that three long-term area-based fishing fleet closures did not enhance per capita population growth rates of the majority of 24 common groundfish species. At a regional scale, 10 out of 24 species are currently at less than 50% of their pre-collapse (1979–1992) biomass, reflecting a sustained diminished productivity, even though fishing mortality has been drastically reduced through a moratorium in 1993. Additional measures are needed to protect severely depleted groundfish, especially when the causes of continued diminished productivity are still largely unresolved. The importance of OECMs as a risk-averse approach toward sustainability is globally accepted and they can be considered a tool toward the overarching UN Sustainable Development Goals (SDG-14). Our study provides further impetus toward articulating the criteria of OECMs and improving their design, monitoring, and testing, while placing OECMs within the broader context of sustainable ecosystem-based management.


2009 ◽  
Vol 6 (6) ◽  
pp. 11127-11157 ◽  
Author(s):  
C. De Bodt ◽  
N. Van Oostende ◽  
J. Harlay ◽  
K. Sabbe ◽  
L. Chou

Abstract. The impact of ocean acidification and increased water temperature on marine ecosystems, in particular those involving calcifying organisms, has been gradually recognised. We examined the individual and combined effects of increased pCO2 (180 ppm V CO2, 380 ppm V CO2 and 750 ppm V CO2 corresponding to past, present and future CO2 conditions, respectively) and temperature (13°C and 18°C) during the calcification phase of the coccolithophore E. huxleyi using batch culture experiments. We showed that the cell abundance-normalized particulate organic carbon concentration (POC) increased from the present to the future CO2 treatments. A significant effect of pCO2 and of temperature on calcification was found, manifesting itself in a lower cell abundance-normalized particulate inorganic carbon (PIC) content as well as a lower PIC:POC ratio at future CO2 levels and at 18°C. Coccosphere-sized particles showed a size reduction trend with both increasing temperature and CO2 concentration. The influence of the different treatments on coccolith morphology was studied by categorizing SEM coccolith micrographs. The number of well-formed coccoliths decreased with increasing pCO2 while temperature did not have a significant impact on coccolith morphology. No interacting effect of pCO2 and temperature was observed on calcite production, coccolith morphology or on coccosphere size. Finally, our results suggest that ocean acidification might have a larger adverse impact on coccolithophorid calcification than surface water warming.


2021 ◽  
Author(s):  
Beatriz M. Monge-Sanz ◽  
Alessio Bozzo ◽  
Nicholas Byrne ◽  
Martyn P. Chipperfield ◽  
Michail Diamantakis ◽  
...  

Abstract. We have implemented a new stratospheric ozone model in the European Centre for Medium-Range Weather Forecasts (ECMWF) system, and tested its performance for different timescales, to assess the impact of stratospheric ozone on meteorological fields. We have used the new ozone model to provide prognostic ozone in medium-range and long-range experiments, showing the feasibility of this ozone scheme for a seamless NWP modelling approach. We find that the stratospheric ozone distribution provided by the new scheme in ECMWF forecast experiments is in very good agreement with observations, even for unusual meteorological conditions such as Arctic stratospheric sudden warmings (SSWs) and Antarctic polar vortex events like the vortex split of year 2002. To assess the impact it has on meteorological variables, we have performed experiments in which the prognostic ozone is interactive with radiation. The new scheme provides a realistic ozone field able to improve the description of the stratosphere in the ECMWF system, we find clear reductions of biases in the stratospheric forecast temperature. The seasonality of the Southern Hemisphere polar vortex is also significantly improved when using the new ozone model. In medium-range simulations we also find improvements in high latitude tropospheric winds during the SSW event considered in this study. In long-range simulations the use of the new ozone model leads to an increase in the winter North Atlantic Oscillation (NAO) index correlation, and an increase in the signal to noise ratio over the North Atlantic sector. In our study we show that by improving the description of the stratospheric ozone in the ECMWF system, the stratosphere-tropospheric coupling improves. This highlights the potential benefits of this new ozone model to exploit stratospheric sources of predictability and improve weather predictions over Europe on a range of time scales.


2003 ◽  
Vol 79 (3) ◽  
pp. 531-540 ◽  
Author(s):  
Pierre Drapeau ◽  
Alain Leduc ◽  
Yves Bergeron ◽  
Sylvie Gauthier ◽  
Jean-Pierre Savard

In Canada, there are still extensive tracts of boreal forest consisting of stands that have resulted from natural disturbances. The country's forests are a mosaic made up to a large extent of old-growth forest that is beyond commercial harvesting age, especially in the boreal forest of eastern Canada. As areas of boreal forest under management steadily expand, as demand for forest products continues to grow and as rotation periods become shorter in response to silvicultural practices, the forest cover will inevitably become younger, causing changes to the structure and composition of the mosaic of forest stands that will affect the aspect of entire landscapes. These changes may have an adverse impact on biological diversity. Forest birds are one group of living organisms that may respond quickly to the advent of younger forest landscapes, thereby acting as a biological indicator. In this paper, we discuss some of the problems that birds face as a result of the truncation of the age-class distribution of managed forest landscapes in eastern Canada's coniferous boreal forest, using data obtained from our research in the Clay Belt region of Quebec and Ontario. More specifically, we look at how birds respond to changes in forest structure and composition in terms of time since natural disturbances, and to variation in dead trees availability. We then consider the impact of the prospective rejuvenation of the forest cover in managed forest landscapes, and possible solutions aimed at mitigating that impact through new management strategies based on the maintenance of forest ecosystem diversity. The ability of these new management strategies to maintain the ecological integrity of bird communities provides an indication of their potential as tools for contributing to the maintenance of biological diversity in a broader sense. Key words: bird communities, old black spruce forests, natural landscape age structure, stand structure, dead wood, multicohort management


Author(s):  
Lin Heng LYE ◽  
Vinayagan Dharmarajah

This paper briefly discusses the prospects of using coastal wetlands as REDD+ projects for small island states. The paper contends that the city-state of Singapore would do well to enhance existing laws to more specifically address the challenges and threats faced in conserving mangroves and inter-tidal mudflats, and support their conservation and rehabilitation, not just to facilitate the implementation of REDD+ projects but also to meet other goals like biodiversity conservation and climate change adaptation. The proposal is to expand Sungei Buloh to encompass the mudflats at Kranji which is home to the mangrove horseshoe crab (Carcinoscrorpius rotundicauda); aligned with inter-tidal and coastal management strategies advanced under the auspices of the Ramsar Convention, the Convention on Biological Diversity and the IUCN. However, there are considerable challenges in maintaining an intact eco-system in the face of rapid development, not only in Singapore itself but also in the neighbouring state of Johor, Malaysia. The paper examines the specific legal strategies that will be required to meet the various objectives of conservation in the context of Singapore's laws and the challenges posed by the development plans of both Singapore and Malaysia.


2020 ◽  
Vol 11 (0) ◽  
pp. 157
Author(s):  
Irene Vanja Dahl

The year 2019 was “the international year of the salmon” (IYS). The overarching aim was “to inform and stimulate outreach and research that aspires to establish the conditions necessary to ensure the resilience of salmon and people throughout the Northern Hemisphere;” further, to bring people together, share and develop knowledge, raise awareness and take action. This article is intended as a contribution to this goal. The article discusses how international law: the Law of the Sea Convention, the Convention on Biological Diversity and the Convention for the Conservation of Salmon in the North Atlantic Ocean relate to conservation and management of wild salmon. The article has a special focus on bilateral cooperation on salmon stocks in boundary/transboundary rivers, and using as a case study the Tana river in Norway and Finland.


Sign in / Sign up

Export Citation Format

Share Document