scholarly journals Change in hydraulic properties and leaf traits of a tall rainforest tree species subjected to long-term throughfall exclusion in the perhumid tropics

2010 ◽  
Vol 7 (6) ◽  
pp. 8553-8589 ◽  
Author(s):  
B. Schuldt ◽  
C. Leuschner ◽  
V. Horna ◽  
G. Moser ◽  
M. Köhler ◽  
...  

Abstract. In a throughfall displacement experiment on Sulawesi, Indonesia, three 0.16 ha stands of a premontane perhumid rainforest were exposed to a two-year soil desiccation period that reduced the soil moisture in the upper soil layers beyond the conventional wilting point. About 25 variables, including leaf morphological and chemical traits, stem diameter growth and hydraulic properties of the xylem in the trunk and terminal twigs, were investigated in trees of the tall-growing tree species Castanopsis acuminatissima (Fagaceae) by comparing desiccated roof plots with nearby control plots. We tested the hypotheses that this tall and productive species is particularly sensitive to drought, and the exposed upper sun canopy is more affected than the shade canopy. Hydraulic conductivity in the xylem of terminal twigs normalised to vessel lumen area was reduced by 25%, leaf area-specific conductivity by 10–33% during the desiccation treatment. Surprisingly, the leaves present at the end of the drought treatment were significantly larger, but not smaller in the roof plots, though reduced in number (about 30% less leaves per unit of twig sapwood area), which points to a drought effect on the leaf bud formation while the remaining leaves may have profited from a surplus of water. Mean vessel diameter and axial conductivity in the outermost xylem of the trunk were significantly reduced and wood density increased, while annual stem diameter increment decreased by 26%. In contradiction to our hypotheses, (i) we found no signs of major damage to the C. acuminatissima trees nor to any other drought sensitivity of tall trees, and (ii) the exposed upper canopy was not more drought susceptible than the shade canopy.

2015 ◽  
Vol 42 (4) ◽  
pp. 423 ◽  
Author(s):  
Shi-Dan Zhu ◽  
Ya-Jun Chen ◽  
Kun-Fang Cao ◽  
Qing Ye

Plant functional traits are closely associated with plant habitats. In this study, we investigated the interspecific variations in stem and leaf hydraulics, xylem and leaf anatomy, gas-exchange rates and leaf pressure–volume relationships among three Syzygium tree species in early, mid- and late successional tropical forests. The objective was to understand the response and adaptation of congeneric species, in terms of branch and leaf functional traits, to different environments. A consistent pattern of decline with succession was evident in leaf and sapwood specific hydraulic conductivity (ks), maximum leaf hydraulic conductance (Kleaf), and photosynthetic rates for the three Syzygium species. Variations of ks and Kleaf were correlated with changes in vessel anatomy (i.e. vessel density and diameter) and leaf flux-related structure (i.e. stomatal pore index and vein density) respectively. However, specific leaf area and leaf to sapwood area ratio did not significantly differ among the three species. In addition, the mid-successional species had the lowest values of leaf water potential at full turgor and turgor loss point and 50% loss of Kleaf, but the greatest value of xylem water potential at 50% loss of ks. Our results demonstrate that leaf and branch traits associated with photosynthesis and/or hydraulic conductance, rather than those associated with drought tolerance, are the key factors underlying the response and adaptation of the three Syzygium tree species along the tropical forest succession.


2019 ◽  
Vol 40 (2) ◽  
pp. 230-244 ◽  
Author(s):  
Hongxia Zhang ◽  
Nate G McDowell ◽  
Henry D Adams ◽  
Anzhi Wang ◽  
Jiabing Wu ◽  
...  

Abstract Drought and nitrogen (N) addition have been shown to affect tree hydraulic traits, but few studies have been made on their interactions across species with different wood types or leaf forms. We examined the responses of hydraulic conductance and xylem anatomical traits of Quercus mongolica (ring porous with simple leaves), Fraxinus mandshurica (ring porous with compound leaves) and Tilia amurensis (diffuse porous with simple leaves) to drought, N addition and their interactions. Drought stress decreased current-year xylem-specific conductivity in stems (Ksx) and leaf hydraulic conductance (Kleaf ), but N addition affected Ksx and Kleaf differently among species and watering regimes. These divergent effects were associated with different responses of anatomical traits and leaf forms. Higher mean vessel diameter in stems and lower vessel density in leaves were observed with N addition. The three-way interactive effects of drought, N addition and tree species were significant for most values of anatomical traits. These results were also reflected in large differences in vessel diameter and density among species with different wood types or leaf forms. The two-way interactive effects of drought and N addition were significant on Kleaf and predawn water potential, but not Ksx, indicating that leaves were more sensitive than stems to a combination of drought stress and N addition. Our results provide mechanistic insight into the variable responses of xylem water transport to the interactions of drought and N availability.


2021 ◽  
Author(s):  
Ke-Yan Zhang ◽  
Da Yang ◽  
Yun-Bing Zhang ◽  
David S Ellsworth ◽  
Kun Xu ◽  
...  

Abstract The scandent shrub plant form is a variant of liana that has upright and self-supporting stems when young but later becomes a climber. We aimed to explore the associations of stem and leaf traits among sympatric lianas, scandent shrubs and trees, and the effects of growth form and leaf habit on variation in stem or leaf traits. We measured 16 functional traits related to stem xylem anatomy, leaf morphology and nutrient stoichiometry in eight liana, eight scandent shrub and 21 tree species co-occurring in a subalpine cold temperate forest at an elevation of 2,600–3,200 m in Southwest China. Overall, lianas, scandent shrubs and trees were ordered along a fast-slow continuum of stem and leaf functional traits, with some traits overlapping. We found a consistent pattern of lianas > scandent shrubs > trees for hydraulically weighted vessel diameter, maximum vessel diameter and theoretical hydraulic conductivity. Vessel density and sapwood density showed a pattern of lianas = scandent shrubs < trees, and lianas < scandent shrubs = trees, respectively. Lianas had significantly higher specific leaf area and lower carbon concentration than co-occurring trees, with scandent shrubs showing intermediate values that overlapped with lianas and trees. The differentiation among lianas, scandent shrubs and trees was mainly explained by variation in stem traits. Additionally, deciduous lianas were positioned at the fast end of the trait spectrum, and evergreen trees at the slow end of the spectrum. Our results showed for the first time clear differentiation in stem and leaf traits among sympatric liana, scandent shrub and tree species in a subalpine cold temperate forest. This work will contribute to understanding the mechanisms responsible for variation in ecological strategies of different growth forms of woody plants.


1995 ◽  
Vol 15 (9) ◽  
pp. 559-567 ◽  
Author(s):  
R. A. Vertessy ◽  
R. G. Benyon ◽  
S. K. O'Sullivan ◽  
P. R. Gribben

2010 ◽  
Vol 67 (6) ◽  
pp. 624-632 ◽  
Author(s):  
Keila Rego Mendes ◽  
Ricardo Antonio Marenco

Global climate models predict changes on the length of the dry season in the Amazon which may affect tree physiology. The aims of this work were to determine the effect of the rainfall regime and fraction of sky visible (FSV) at the forest understory on leaf traits and gas exchange of ten rainforest tree species in the Central Amazon, Brazil. We also examined the relationship between specific leaf area (SLA), leaf thickness (LT), and leaf nitrogen content on photosynthetic parameters. Data were collected in January (rainy season) and August (dry season) of 2008. A diurnal pattern was observed for light saturated photosynthesis (Amax) and stomatal conductance (g s), and irrespective of species, Amax was lower in the dry season. However, no effect of the rainfall regime was observed on g s nor on the photosynthetic capacity (Apot, measured at saturating [CO2]). Apot and leaf thickness increased with FSV, the converse was true for the FSV-SLA relationship. Also, a positive relationship was observed between Apot per unit leaf area and leaf nitrogen content, and between Apot per unit mass and SLA. Although the rainfall regime only slightly affects soil moisture, photosynthetic traits seem to be responsive to rainfall-related environmental factors, which eventually lead to an effect on Amax. Finally, we report that little variation in FSV seems to affect leaf physiology (Apot) and leaf anatomy (leaf thickness).


2021 ◽  
Author(s):  
Shanshan Yang ◽  
Frank J. Sterck ◽  
Ute Sass-Klaassen ◽  
J. Hans C. Cornelissen ◽  
Richard S.P. van Logtestijn ◽  
...  

Abstract A central paradigm in comparative ecology is that species sort out along a global economic strategy spectrum, ranging from slow to fast growth. Many studies evaluated plant strategy spectra for leaf traits, b u t few studies evaluated stem strategy spectra using a comprehensive set of anatomical, chemical and morphological traits, addressing key stem functions of different stem compartments (inner wood, outer wood and bark). This study evaluates how stem traits vary in the wood and bark of temperate tree species, and whether a slow-fast growth strategy spectrum exists and what traits make up this plant strategy spectrum. For 14 temperate gymnosperm and angiosperm species, 20 traits belonging to six key stem functions were measured for three stem compartments. Both across and within gymnosperms and angiosperms, a slow-fast stem strategy spectrum is found. Gymnosperms have slow traits and showed converging stem strategies because of their uniform tracheids. Angiosperms have fast traits and showed diverging stem strategies because of a wider array of tissues (vessels, parenchyma and fibers) and vessel size and arrangements (ring-porous versus diffuse porous). Gymnosperms showed a main trade-off between hydraulic efficiency and safety, and angiosperms showed a main trade-off between ‘slow’ diffuse porous species and ‘fast’ ring porous species. The slow traits of gymnosperms allow for a high hydraulic safety, an evergreen leaf habit and steady but slow growth makes them successful in unproductive habitats whereas the fast traits of angiosperms allow for high conductivity, a deciduous leaf habit and fast growth which makes them successful in productive habitats.


2016 ◽  
Author(s):  
Matheus Henrique Nunes ◽  
Matthew P. Davey ◽  
David Anthony Coomes

Abstract. Understanding the causes of variation in plant functional traits is a central issue in ecology, particularly in the context of global change. Analyses of the drivers of traits variation based on thousands of tree species are starting to unravel patterns of variation at the global scale, but these studies tend to focus on interspecific variation, and the contribution of intraspecific changes remains less well understood. Hyperspectroscopy is a recently developed technology for estimating the traits of fresh leaves. Few studies have evaluated its potential for assessing inter- and intra-specific trait variability in community ecology. Working with 24 leaf traits for European tree species on contrasting soil types, found growing on deep alluvial soils and nearby shallow chalk soils, we ask: (i) What contribution do soil type and species identity make to trait variation? (ii) When traits are clustered into three functional groups (light capture and growth, leaf structure and defence, as well as rock-derived nutrients), are some groups more affected by soil than others? (iii) What traits can be estimated precisely using field spectroscopy? (iv) Can leaf spectra be used to detect inter-soil as well as inter-specific variation in traits? The contribution of species and soil-type effects to variation in traits were evaluated using statistical analyses. Foliar traits were predicted from spectral reflectance using partial least square regression, and so inter- and intra-specific variation. Most leaf traits varied greatly among species. The effects of soil type were generally weak by comparison. Macronutrient concentrations were greater on alluvial than chalk soils while micronutrient concentration showed the opposite trend. However, structural traits, as well as most pigments and phenolic concentrations varied little with soil type. Field spectroscopy provided accurate estimates of species-level trait values, but was less effective at detecting subtle variation of rock-derived nutrients between soil types. Field spectroscopy was a powerful technique for estimating cross-species variation in foliar traits and Si predictions using spectroscopy appear to be promising. However, it was unable to detect subtle within-species variation of traits associated with soil type.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Guang-cheng Shao ◽  
Ming-hui Wang ◽  
Na Liu ◽  
Min Yuan ◽  
Prem Kumar ◽  
...  

The effects of two levels of irrigation water (100%, 60%) and buried underground pipe depths (0.8 m, 0.6 m) under rain shelters’ conditions on yield and some quality parameters of tomato were investigated. A fully randomized factorial experiment was conducted between April and August in 2011 and 2012 at Hohai University. It was found that drainage treatments enhanced biomass production, whereas soil desiccation led to biomass reduction. At 60 cm buried underground pipe depths, the drought treatments increased the mean root weight and root-shoot ratio by 14% and 39%, respectively. The main effects of drainage treatments on the fruit quality were increases in total soluble solids (TSS), soluble sugar (SS), and vitamin C (VC) compared to the control. In addition, drainage treatments increased the average yield by 13% and 9%, respectively, in both years. The drought treatments did not significantly alter fruit yield, although mean single fruit weight was slightly reduced. Instead, these treatments tend to have great potential to improve fruit quality (TSS, SS, and VC) to variable extents. In both years, the drought treatment at 60 cm buried underground pipe depths proved to possess the highest comprehensive quality index based on Principal Component Analysis.


Sign in / Sign up

Export Citation Format

Share Document