scholarly journals High nitrate to phosphorus ratio attenuates negative effects of rising <i>p</i>CO<sub>2</sub> on net population carbon accumulation

2011 ◽  
Vol 8 (4) ◽  
pp. 6833-6857
Author(s):  
S. A. Krug ◽  
S. L. Eggers ◽  
B. Matthiessen

Abstract. The ongoing rise in atmospheric pCO2 and the consequent increase in ocean acidification have direct effects on marine calcifying phytoplankton which potentially translates into altered carbon export. To date it remains unclear first, how nutrient ratio, in particular from coccolithophores preferred phosphate limitation, interacts with pCO2 on particulate carbon accumulation. Second, how direct physiological responses on the cellular level translate into a net population response. In this study cultures of Emiliania huxleyi were full-factorially exposed to two different N:P ratios (Redfield and high N:P) and three different pCO2 levels. Effects on net population particulate inorganic and organic carbon (PIC, POC) were measured after E. huxleyi cultures reached stationary phase. Thereby cell sizes and total cell abundance were taken into account. Corresponding to literature results show a significant negative cellular PIC and POC response which, however, was strongest under high N:P ratio. In contrast, net population PIC and POC accumulation was significantly attenuated under high N:P ratio. We suggest that less cellular nutrient accumulation allowed for higher cell abundances which compensated for the strong negative cellular PIC and POC response to pCO2 on the population level. Moreover, the design of this study also allowed following natural alteration of carbon chemistry through changing DIC and alkalinity. Our results suggest that at high initial pCO2 natural alteration of pCO2 during the experimental runtime was regulated by algal biomass. In contrast, at low initial pCO2 the PIC/POC ratio was responsible for changes in pCO2. Our results point to the fact that the physiological (i.e. cellular) PIC and POC response to ocean acidification cannot be linearly extrapolated to total population response and thus carbon export. It is therefore recommended to consider effects of nutrient limitation on cell physiology and translate these to net population carbon accumulation when predicting the influence of coccolithophores on both, the atmospheric pCO2 feedback and their function in carbon export mechanisms.

2012 ◽  
Vol 9 (3) ◽  
pp. 1195-1203 ◽  
Author(s):  
B. Matthiessen ◽  
S. L. Eggers ◽  
S. A. Krug

Abstract. The ongoing rise in atmospheric pCO2 and consequent increase in ocean acidification have direct effects on marine calcifying phytoplankton, which potentially alters carbon export. To date it remains unclear, firstly, how nutrient regime, in particular by coccolithophores preferred phosphate limitation, interacts with pCO2 on particulate carbon accumulation; secondly, how direct physiological responses on the cellular level translate into total population response. In this study, cultures of Emiliania huxleyi were full-factorially exposed to two different N:P regimes and three different pCO2 levels. Cellular biovolume and PIC and POC content significantly declined in response to pCO2 in both nutrient regimes. Cellular PON content significantly increased in the Redfield treatment and decreased in the high N:P regime. Cell abundance significantly declined in the Redfield and remained constant in the high N:P regime. We hypothesise that in the high N:P regime severe phosphorous limitation could be compensated either by reduced inorganic phosphorous demand and/or by enzymatic uptake of organic phosphorous. In the Redfield regime we suggest that enzymatic phosphorous uptake to supplement enhanced phosphorous demand with pCO2 was not possible and thus cell abundance declined. These hypothesised different physiological responses of E. huxleyi among the nutrient regimes significantly altered population carrying capacities along the pCO2 gradient. This ultimately led to the attenuated total population response in POC and PIC content and biovolume to increased pCO2 in the high N:P regime. Our results point to the fact that the physiological (i.e. cellular) PIC and POC response to ocean acidification cannot be linearly extrapolated to total population response and thus carbon export. It is therefore necessary to consider both effects of nutrient limitation on cell physiology and their consequences for population size when predicting the influence of coccolithophores on atmospheric pCO2 feedback and their function in carbon export mechanisms.


2017 ◽  
Vol 118 (1) ◽  
pp. 203-218 ◽  
Author(s):  
Erin Goddard ◽  
Samuel G. Solomon ◽  
Thomas A. Carlson

The middle-temporal area (MT) of primate visual cortex is critical in the analysis of visual motion. Single-unit studies suggest that the response dynamics of neurons within area MT depend on stimulus features, but how these dynamics emerge at the population level, and how feature representations interact, is not clear. Here, we used multivariate classification analysis to study how stimulus features are represented in the spiking activity of populations of neurons in area MT of marmoset monkey. Using representational similarity analysis we distinguished the emerging representations of moving grating and dot field stimuli. We show that representations of stimulus orientation, spatial frequency, and speed are evident near the onset of the population response, while the representation of stimulus direction is slower to emerge and sustained throughout the stimulus-evoked response. We further found a spatiotemporal asymmetry in the emergence of direction representations. Representations for high spatial frequencies and low temporal frequencies are initially orientation dependent, while those for high temporal frequencies and low spatial frequencies are more sensitive to motion direction. Our analyses reveal a complex interplay of feature representations in area MT population response that may explain the stimulus-dependent dynamics of motion vision. NEW & NOTEWORTHY Simultaneous multielectrode recordings can measure population-level codes that previously were only inferred from single-electrode recordings. However, many multielectrode recordings are analyzed using univariate single-electrode analysis approaches, which fail to fully utilize the population-level information. Here, we overcome these limitations by applying multivariate pattern classification analysis and representational similarity analysis to large-scale recordings from middle-temporal area (MT) in marmoset monkeys. Our analyses reveal a dynamic interplay of feature representations in area MT population response.


Harmful Algae ◽  
2019 ◽  
Vol 87 ◽  
pp. 101621 ◽  
Author(s):  
Hong Wang ◽  
Xiaoqin Niu ◽  
Xinqian Feng ◽  
Rodrigo J. Gonçalves ◽  
Wanchun Guan

2016 ◽  
Vol 74 (4) ◽  
pp. 926-928 ◽  
Author(s):  
Paul McElhany

The ocean acidification (OA) literature is replete with laboratory studies that report species sensitivity to seawater carbonate chemistry in experimental treatments as an “effect of OA”. I argue that this is unintentionally misleading, since these studies do not actually demonstrate an effect of OA but rather show sensitivity to CO2. Documenting an effect of OA involves showing a change in a species (e.g. population abundance or distribution) as a consequence of anthropogenic changes in marine carbonate chemistry. To date, there have been no unambiguous demonstrations of a population level effect of anthropogenic OA, as that term is defined by the IPCC.


2007 ◽  
Vol 4 (4) ◽  
pp. 2407-2440 ◽  
Author(s):  
T. Moutin ◽  
D. M. Karl ◽  
S. Duhamel ◽  
P. Rimmelin ◽  
P. Raimbault ◽  
...  

Abstract. Due to the low atmospheric input of phosphate into the open ocean, it is one of the key nutrients that could ultimately control primary production and carbon export into the deep ocean. The observed trend over the last 20 years, has shown a decrease in the dissolved inorganic phosphate (DIP) pool in the North Pacific gyre, which has been correlated to the increase in di-nitrogen (N2) fixation rates. Following a NW-SE transect, in the Southeast Pacific during the early austral summer (BIOSOPE cruise), we present data on DIP, dissolved organic phosphate (DOP), and particulate phosphate (PP) pools and DIP turnover times (TDIP) along with N2 fixation rates. We observed a decrease in DIP concentration from the edges to the centre of the gyre. Nevertheless the DIP concentrations remained above 100 nmol L−1 and TDIP were more than a month in the centre of the gyre: DIP availability remained largely above the level required for phosphate limitation. This contrasts with recent observations in the western Pacific Ocean at the same latitude (DIAPALIS cruises) where lower DIP concentrations (<20 nmol L−1) and TDIP<50 h were measured during the summer season. During the BIOSOPE cruise, N2 fixation rates were higher within the cold water upwelling near the Chilean coast. This observation contrasts with recently obtained model output for N2 fixation distribution in the South Pacific area and emphasises the importance of studying the main factors controlling this process. The South Pacific gyre can be considered a High P Low Chlorophyll (HPLC) oligotrophic area, which could potentially support high N2 fixation rates, and possibly carbon dioxide sequestration, if the primary ecophysiological controls, temperature and/or iron availability, were alleviated.


2015 ◽  
Vol 12 (23) ◽  
pp. 7025-7046 ◽  
Author(s):  
A. Guyennon ◽  
M. Baklouti ◽  
F. Diaz ◽  
J. Palmieri ◽  
J. Beuvier ◽  
...  

Abstract. The Mediterranean Sea is one of the most oligotrophic regions of the oceans, and nutrients have been shown to limit both phytoplankton and bacterial activities, resulting in a potential major role of dissolved organic carbon (DOC) export in the biological pump. Strong DOC accumulation in surface waters is already well documented, though measurements of DOC stocks and export flux are still sparse and associated with major uncertainties. This study provides the first basin-scale overview and analysis of organic carbon stocks and export fluxes in the Mediterranean Sea through a modeling approach based on a coupled model combining a mechanistic biogeochemical model (Eco3M-MED) and a high-resolution (eddy-resolving) hydrodynamic simulation (NEMO-MED12). The model is shown to reproduce the main spatial and seasonal biogeochemical characteristics of the Mediterranean Sea. Model estimations of carbon export are also of the same order of magnitude as estimations from in situ observations, and their respective spatial patterns are mutually consistent. Strong differences between the western and eastern basins are evidenced by the model for organic carbon export. Though less oligotrophic than the eastern basin, the western basin only supports 39 % of organic carbon (particulate and dissolved) export. Another major result is that except for the Alboran Sea, the DOC contribution to organic carbon export is higher than that of particulate organic carbon (POC) throughout the Mediterranean Sea, especially in the eastern basin. This paper also investigates the seasonality of DOC and POC exports as well as the differences in the processes involved in DOC and POC exports in light of intracellular quotas. Finally, according to the model, strong phosphate limitation of both bacteria and phytoplankton growth is one of the main drivers of DOC accumulation and therefore of export.


2017 ◽  
Vol 13 (2) ◽  
pp. 20160774 ◽  
Author(s):  
Giannina S. I. Hattich ◽  
Luisa Listmann ◽  
Julia Raab ◽  
Dorthe Ozod-Seradj ◽  
Thorsten B. H. Reusch ◽  
...  

Phenotypic plasticity describes the phenotypic adjustment of the same genotype to different environmental conditions and is best described by a reaction norm. We focus on the effect of ocean acidification on inter- and intraspecific reaction norms of three globally important phytoplankton species ( Emiliania huxleyi, Gephyrocapsa oceanica and Chaetoceros affinis ). Despite significant differences in growth rates between the species, they all showed a high potential for phenotypic buffering (similar growth rates between ambient and high CO 2 conditions). Only three coccolithophore genotypes showed a reduced growth in high CO 2 . Diverging responses to high CO 2 of single coccolithophore genotypes compared with the respective mean species responses, however, raise the question of whether an extrapolation to the population level is possible from single-genotype experiments. We therefore compared the mean response of all tested genotypes with a total species response comprising the same genotypes, which was not significantly different in the coccolithophores. Assessing species reaction norms to different environmental conditions on short time scale in a genotype-mix could thus reduce sampling effort while increasing predictive power.


2014 ◽  
pp. 223-268 ◽  
Author(s):  
Jeremy T. Mathis ◽  
Jacqueline M. Grebmeier ◽  
Dennis A. Hansell ◽  
Russell R. Hopcroft ◽  
David L. Kirchman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document