scholarly journals Nitrous oxide emissions from crop rotations including wheat, rapeseed and dry pea

2012 ◽  
Vol 9 (7) ◽  
pp. 9289-9314 ◽  
Author(s):  
M. H. Jeuffroy ◽  
E. Baranger ◽  
B. Carrouée ◽  
E. de Chezelles ◽  
M. Gosme ◽  
...  

Abstract. Approximately 65% of anthropogenic emissions of N2O, a potent greenhouse gas, originate from soils at global scale, and particularly after N fertilisation of the main crops in Europe. Thanks to their capacity to fix atmospheric N2 through biological fixation, legumes allow to reduce N fertilizer use, and possibly N2O emission. Nevertheless, the decomposition of crop organic matter during the crop cycle and during the residue decomposition, and possibly the N fixation process itself, could lead to N2O emissions. The objective of this study was to quantify N2O emissions from a dry pea crop (Pisum sativum, harvested at maturity) and from the subsequent crops in comparison with N2O emissions from wheat and oilseed-rape crops, fertilized or not, in various rotations. A field experiment was conducted during 4 consecutive years, aiming at comparing the emissions during the pea crop, in comparison with those during the wheat (fertilized or not) or oilseed rape crops, and after the pea crop, in comparison with other preceding crops. N2O fluxes were measured using static chambers. In spite of low N2O fluxes, mainly linked with the site soil characteristics, fluxes during the crop were significantly lower for pea and unfertilized wheat than for fertilized wheat and oilseed rape. The effect of the preceding crop was not significant, while soil mineral N at harvest was higher after pea. These results, combined with the emission reduction allowed by the production and transport of the N fertiliser not applied on the pea crop, should be confirmed in a larger range of soil types. Nevertheless, they demonstrate the absence of N2O emission linked to the symbiotic N fixation process, and allow us to estimate the decrease of N2O emissions to 20–25% by including one pea crop in a three-year rotation. At a larger scale, this reduction of GHG emissions at field level has to be cumulated with the reduction of GHG emissions linked with the lower level of production and transport of the N fertiliser not applied on the pea crop.

2013 ◽  
Vol 10 (3) ◽  
pp. 1787-1797 ◽  
Author(s):  
M. H. Jeuffroy ◽  
E. Baranger ◽  
B. Carrouée ◽  
E. de Chezelles ◽  
M. Gosme ◽  
...  

Abstract. Approximately 65% of anthropogenic emissions of N2O, a potent greenhouse gas (GHG), originate from soils at a global scale, and particularly after N fertilisation of the main crops in Europe. Thanks to their capacity to fix atmospheric N2 through biological fixation, legumes can reduce N fertilizer use, and possibly N2O emissions. Nevertheless, the decomposition of crop organic matter during the crop cycle and residue decomposition, and possibly the N fixation process itself, could lead to N2O emissions. The objective of this study was to quantify N2O emissions from a dry pea crop (Pisum sativum, harvested at maturity) and from the subsequent crops in comparison with N2O emissions from wheat and oilseed rape crops, fertilized or not, in various rotations. A field experiment was conducted over 4 consecutive years to compare the emissions during the pea crop, in comparison with those during the wheat (fertilized or not) or oilseed rape crops, and after the pea crop, in comparison with other preceding crops. N2O fluxes were measured using static chambers. In spite of low N2O fluxes, mainly due to the site's soil characteristics, fluxes during the crop were significantly lower for pea and unfertilized wheat than for fertilized wheat and oilseed rape. The effect of the preceding crop was not significant, while soil mineral N at harvest was higher after the pea crop. These results should be confirmed over a wider range of soil types. Nevertheless, they demonstrate the absence of N2O emissions linked to the symbiotic N fixation process, and allow us to estimate the decrease in N2O emissions by 20–25% through including one pea crop in a three-year rotation. On a larger scale, this reduction of GHG emissions at field level has to be added to the decrease due to the reduced production and transport of the N fertilizer not applied to the pea crop.


Soil Research ◽  
2003 ◽  
Vol 41 (2) ◽  
pp. 165 ◽  
Author(s):  
Ram C. Dalal ◽  
Weijin Wang ◽  
G. Philip Robertson ◽  
William J. Parton

Increases in the concentrations of greenhouse gases, carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and halocarbons in the atmosphere due to human activities are associated with global climate change. The concentration of N2O has increased by 16% since 1750. Although atmospheric concentration of N2O is much smaller (314 ppb in 1998) than of CO2 (365 ppm), its global warming potential (cumulative radiative forcing) is 296 times that of the latter in a 100-year time horizon. Currently, it contributes about 6% of the overall global warming effect but its contribution from the agricultural sector is about 16%. Of that, almost 80% of N2O is emitted from Australian agricultural lands, originating from N fertilisers (32%), soil disturbance (38%), and animal waste (30%). Nitrous oxide is primarily produced in soil by the activities of microorganisms during nitrification, and denitrification processes. The ratio of N2O to N2 production depends on oxygen supply or water-filled pore space, decomposable organic carbon, N substrate supply, temperature, and pH and salinity. N2O production from soil is sporadic both in time and space, and therefore, it is a challenge to scale up the measurements of N2O emission from a given location and time to regional and national levels.Estimates of N2O emissions from various agricultural systems vary widely. For example, in flooded rice in the Riverina Plains, N2O emissions ranged from 0.02% to 1.4% of fertiliser N applied, whereas in irrigated sugarcane crops, 15.4% of fertiliser was lost over a 4-day period. Nitrous oxide emissions from fertilised dairy pasture soils in Victoria range from 6 to 11 kg N2O-N/ha, whereas in arable cereal cropping, N2O emissions range from <0.01% to 9.9% of N fertiliser applications. Nitrous oxide emissions from soil nitrite and nitrates resulting from residual fertiliser and legumes are rarely studied but probably exceed those from fertilisers, due to frequent wetting and drying cycles over a longer period and larger area. In ley cropping systems, significant N2O losses could occur, from the accumulation of mainly nitrate-N, following mineralisation of organic N from legume-based pastures. Extensive grazed pastures and rangelands contribute annually about 0.2 kg N/ha as N2O (93 kg/ha per year CO2-equivalent). Tropical savannas probably contribute an order of magnitude more, including that from frequent fires. Unfertilised forestry systems may emit less but the fertilised plantations emit more N2O than the extensive grazed pastures. However, currently there are limited data to quantify N2O losses in systems under ley cropping, tropical savannas, and forestry in Australia. Overall, there is a need to examine the emission factors used in estimating national N2O emissions; for example, 1.25% of fertiliser or animal-excreted N appearing as N2O (IPCC 1996). The primary consideration for mitigating N2O emissions from agricultural lands is to match the supply of mineral N (from fertiliser applications, legume-fixed N, organic matter, or manures) to its spatial and temporal needs by crops/pastures/trees. Thus, when appropriate, mineral N supply should be regulated through slow-release (urease and/or nitrification inhibitors, physical coatings, or high C/N ratio materials) or split fertiliser application. Also, N use could be maximised by balancing other nutrient supplies to plants. Moreover, non-legume cover crops could be used to take up residual mineral N following N-fertilised main crops or mineral N accumulated following legume leys. For manure management, the most effective practice is the early application and immediate incorporation of manure into soil to reduce direct N2O emissions as well as secondary emissions from deposition of ammonia volatilised from manure and urine.Current models such as DNDC and DAYCENT can be used to simulate N2O production from soil after parameterisation with the local data, and appropriate modification and verification against the measured N2O emissions under different management practices.In summary, improved estimates of N2O emission from agricultural lands and mitigation options can be achieved by a directed national research program that is of considerable duration, covers sampling season and climate, and combines different techniques (chamber and micrometeorological) using high precision analytical instruments and simulation modelling, under a range of strategic activities in the agriculture sector.


2015 ◽  
Vol 12 (21) ◽  
pp. 6405-6427 ◽  
Author(s):  
Y. Huang ◽  
S. Gerber

Abstract. Nitrous oxide (N2O) is an important greenhouse gas that also contributes to the depletion of stratospheric ozone. Due to its high temporal and spatial heterogeneity, a quantitative understanding of terrestrial N2O emission and its variabilities and responses to climate change are challenging. We added a soil N2O emission module to the dynamic global land model LM3V-N, and tested its sensitivity to mechanisms that affect the level of mineral nitrogen (N) in soil such as plant N uptake, biological N fixation, amount of volatilized N redeposited after fire, and nitrification-denitrification. We further tested the relationship between N2O emission and soil moisture, and assessed responses to elevated CO2 and temperature. Results extracted from the corresponding gridcell (without site-specific forcing data) were comparable with the average of cross-site observed annual mean emissions, although differences remained across individual sites if stand-level measurements were representative of gridcell emissions. Processes, such as plant N uptake and N loss through fire volatilization that regulate N availability for nitrification-denitrification have strong controls on N2O fluxes in addition to the parameterization of N2O loss through nitrification and denitrification. Modelled N2O fluxes were highly sensitive to water-filled pore space (WFPS), with a global sensitivity of approximately 0.25 TgN per year per 0.01 change in WFPS. We found that the global response of N2O emission to CO2 fertilization was largely determined by the response of tropical emissions with reduced N2O fluxes in the first few decades and increases afterwards. The initial reduction was linked to N limitation under higher CO2 level, and was alleviated through feedbacks such as biological N fixation. The extratropical response was weaker and generally positive, highlighting the need to expand field studies in tropical ecosystems. We did not find synergistic effects between warming and CO2 increase as reported in analyses with different models. Warming generally enhanced N2O efflux and the enhancement was greatly dampened when combined with elevated CO2, although CO2 alone had a small effect. The differential response in the tropics compared to extratropics with respect to magnitude and sign suggests caution when extrapolating from current field CO2 enrichment and warming studies to the globe.


2013 ◽  
Vol 10 (11) ◽  
pp. 18337-18358 ◽  
Author(s):  
Y. Zhang ◽  
Y. Mu ◽  
Y. Zhou ◽  
J. Liu ◽  
C. Zhang

Abstract. Agricultural soil with fertilization is a main anthropogenic source for atmospheric N2O. N2O fluxes from a maize-wheat field in the North China Plain (NCP) were investigated for four successive years using static chamber method. The annual N2O fluxes from control (without fertilization) and fertilization plots were 1.5 ± 0.2 and 9.4 ± 1.7 kg N ha−1 yr−1 in 2008–2009, 2.0 ± 0.01 and 4.0 ± 0.03 kg N ha−1 yr−1 in 2009–2010, 1.3 ± 0.02 and 5.0 ± 0.3kg N ha−1 yr−1 in 2010–2011, and 2.7 ± 0.6 and 12.5 ± 0.1 kg N ha−1 yr−1 in 2011–2012, respectively. Fertilizer-induced emission factors (EFs) in the corresponding years were 2.4, 0.60, 1.1 and 2.9%, respectively. Significant linear correlation between fertilized-induced N2O emission (Y, kg N ha−1 yr−1) and rainfall 4 day before and 10 days after fertilization (X, mm) was found as Y = 0.04767X − 1.06453 (N = 4, R2 = 0.99241, P = 0.00253). Therefore, the remarkable interannual variations of N2O emissions and the EFs from the agricultural field were mainly ascribed to the rainfall. The total N2O emission from the agricultural field in the NCP was estimated to be 144 Gg N yr−1 based on the average flux derived from the measurements of four years, and the fertilizer-induced N2O emission accounted for about 76% (110 Gg N yr−1) of total emission.


2018 ◽  
Vol 15 (18) ◽  
pp. 5519-5543 ◽  
Author(s):  
Kathrin Fuchs ◽  
Lukas Hörtnagl ◽  
Nina Buchmann ◽  
Werner Eugster ◽  
Val Snow ◽  
...  

Abstract. Replacing fertiliser nitrogen with biologically fixed nitrogen (BFN) through legumes has been suggested as a strategy for nitrous oxide (N2O) mitigation from intensively managed grasslands. While current literature provides evidence for an N2O emission reduction effect due to reduced fertiliser input, little is known about the effect of increased legume proportions potentially offsetting these reductions, i.e. by increased N2O emissions from plant residues and root exudates. In order to assess the overall effect of this mitigation strategy on permanent grassland, we performed an in situ experiment and quantified net N2O fluxes and biomass yields in two differently managed grass–clover mixtures. We measured N2O fluxes in an unfertilised parcel with high clover proportions vs. an organically fertilised control parcel with low clover proportions using the eddy covariance (EC) technique over 2 years. Furthermore, we related the measured N2O fluxes to management and environmental drivers. To assess the effect of the mitigation strategy, we measured biomass yields and quantified biologically fixed nitrogen using the 15N natural abundance method. The amount of BFN was similar in both parcels in 2015 (control: 55±5 kg N ha−1 yr−1; clover parcel: 72±5 kg N ha−1 yr−1) due to similar clover proportions (control: 15 % and clover parcel: 21 %), whereas in 2016 BFN was substantially higher in the clover parcel compared to the much lower control (control: 14±2 kg N ha−1 yr−1 with 4 % clover in DM; clover parcel: 130±8 kg N ha−1 yr−1 and 44 % clover). The mitigation management effectively reduced N2O emissions by 54 % and 39 % in 2015 and 2016, respectively, corresponding to 1.0 and 1.6 t ha−1 yr−1 CO2 equivalents. These reductions in N2O emissions can be attributed to the absence of fertilisation on the clover parcel. Differences in clover proportions during periods with no recent management showed no measurable effect on N2O emissions, indicating that the decomposition of plant residues and rhizodeposition did not compensate for the effect of fertiliser reduction on N2O emissions. Annual biomass yields were similar under mitigation management, resulting in a reduction of N2O emission intensities from 0.42 g N2O-N kg−1 DM (control) to 0.28 g N2O-N kg−1 DM (clover parcel) over the 2-year observation period. We conclude that N2O emissions from fertilised grasslands can be effectively reduced without losses in yield by increasing the clover proportion and reducing fertilisation.


2018 ◽  
Author(s):  
Kathrin Fuchs ◽  
Lukas Hörtnagl ◽  
Nina Buchmann ◽  
Werner Eugster ◽  
Valerie Snow ◽  
...  

Abstract. Replacing fertilizer nitrogen with biological nitrogen fixation (BNF) through legumes has been suggested as a strategy for nitrous oxide (N2O) mitigation from intensively managed grasslands. While current literature provides evidence for an N2O emission reduction effect due to reduced fertilizer input, little is known about the effect of increased legume proportions potentially offsetting these reductions, i.e. by increased N2O emissions from plant residues and root exudates. In order to assess the overall effect of this mitigation strategy on permanent grassland, we performed an in-situ experiment to quantify net N2O fluxes and biomass yields in two differently managed grass-clover mixtures. We measured N2O fluxes in an unfertilized parcel with high clover proportions vs. a fertilized control parcel with low clover proportions using the eddy–covariance (EC) technique over two years. Furthermore, we related the measured N2O fluxes to management and environmental drivers. To assess the effect of the mitigation strategy, we measured biomass yields and quantified biologically fixed nitrogen using the 15N natural abundance method. The mitigation management effectively reduced N2O emissions by 54 % and 39 % in 2015 and 2016, respectively. These reductions in N2O emissions can be attributed to the absence of fertilization on the clover parcel. Differences in clover proportions during periods with no recent management showed no measurable effect on N2O emissions, indicating that decomposition of plant residues and rhizodeposition did not compensate the effect of fertilizer reduction on N2O emissions. Annual biomass yields were similar under mitigation management, resulting in a reduction of N2O emission intensities from 0.42 g N2O-N kg−1 DM (control) to 0.28 g N2O-N kg−1 DM (clover parcel) over the two years observation period. We conclude that N2O emissions from fertilized grasslands can be effectively reduced without losses in yield by increasing the clover proportion and reducing fertilization.


2011 ◽  
Vol 4 (10) ◽  
pp. 2179-2194 ◽  
Author(s):  
S. K. Jones ◽  
D. Famulari ◽  
C. F. Di Marco ◽  
E. Nemitz ◽  
U. M. Skiba ◽  
...  

Abstract. Managed grasslands are known to be an important source of N2O with estimated global losses of 2.5 Tg N2O-N yr−1. Chambers are to date the most widely used method to measure N2O fluxes, but also micrometeorological methods are successfully applied. In this paper we present a comparison of N2O fluxes measured by non-steady state chambers and eddy covariance (EC) (using an ultra-sonic anemometer coupled with a tunable diode laser) from an intensively grazed and fertilised grassland site in South East Scotland. The measurements were taken after fertilisation events in 2003, 2007 and 2008. In four out of six comparison periods, a short-lived increase of N2O emissions was observed after mineral N application, returning to background level within 2–6 days. Highest fluxes were measured by both methods in July 2007 with maximum values of 1438 ng N2O-N m−2 s−1 (EC) and 651 ng N2O-N m−2 s−1 (chamber method). Negative fluxes above the detection limit were observed in all comparison periods by EC, while with chambers, the recorded negative fluxes were always below detection limit. Median and average fluxes over each period were always positive. Over all 6 comparison periods, 69% of N2O fluxes measured by EC at the time of chamber closure were within the range of the chamber measurements. N2O fluxes measured by EC during the time of chamber closure were not consistently smaller, neither larger, compared to those measured by chambers: this reflects the fact that the different techniques integrate fluxes over different spatial and temporal scales. Large fluxes measured by chambers may be representing local hotspots providing a small contribution to the flux measured by the EC method which integrates over a larger area. The spatial variability from chamber measurements was high, as shown by a coefficient of variation of up to 139%. No diurnal pattern of N2O fluxes was observed, possibly due to the small diurnal variations of soil temperature. The calculation of cumulative fluxes using different integration methods showed EC data provide generally lower estimates of N2O emissions than chambers.


Forests ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 251 ◽  
Author(s):  
Kerou Zhang ◽  
Haidong Wu ◽  
Mingxu Li ◽  
Zhongqing Yan ◽  
Yong Li ◽  
...  

Forest nitrous oxide (N2O) emission plays an important role in the greenhouse gas budget of forest ecosystems. However, spatial variability in N2O fluxes complicates the determination of key factors of N2O fluxes at different scales. Based on an updated database of N2O fluxes and the main edaphic factors of global forests, the magnitude of N2O fluxes from forests and the relationships between edaphic factors and N2O fluxes at different scales were analyzed. According to the results, the average annual N2O flux of the global forest was 142.91 ± 14.1 mg N m−2 year−1. The range of total forest estimated N2O emission was 4.45–4.69 Tg N in 2000. N2O fluxes from forests with different leaf traits (broadleaved and coniferous) have significant differences in magnitude, whereas the leaf habit (evergreen and deciduous) was an important characteristic reflecting different patterns of N2O seasonal variations. The main factors affecting N2O fluxes on the global scale were ammonium (NH4+) and nitrate (NO3−) concentrations. With an increasing scale (from the site scale to the regional scale to the global scale), the explanatory power of the five edaphic factors to N2O flux decreased gradually. In addition, the response curves of N2O flux to edaphic factors were diversified among different scales. At both the global and regional scales, soil hydrothermal condition (water filled pore space (WFPS) and soil temperature) might not be the main spatial regulation for N2O fluxes, whereas soil nutrient factors (particularly NO3− concentration) could contribute more on N2O flux spatial variations. The results of site-control analysis demonstrated that there were high spatial heterogeneity of the main N2O controls, showing N2O fluxes from low latitude forests being more likely associated with soil WFPS and temperature. Thus, our findings provide valuable insights into the regulatory edaphic factors underlying the variability in N2O emissions, when modeling at different scales.


2010 ◽  
Vol 7 (3) ◽  
pp. 4539-4563 ◽  
Author(s):  
X. R. Wei ◽  
M. D. Hao ◽  
X. H. Xue ◽  
P. Shi ◽  
A. Wang ◽  
...  

Abstract. Nitrous oxide (N2O) is an important greenhouse gas. N2O emissions from soils vary with fertilization and cropping practices. The response of N2O emission to fertilization of agricultural soils plays an important role in global N2O emission. The objective of this study was to assess the seasonal pattern of N2O fluxes and the annual N2O emissions from a rain-fed winter wheat (Triticum aestivum L.) field in the Loess Plateau of China. A static flux chamber method was used to measure soil N2O fluxes from 2006 to 2008. The study included 5 treatments with 3 replications in a randomized complete block design. Prior to initiating N2O measurements the treatments had received the same fertilization for 22 years. The fertilizer treatments were unfertilized control (CK), manure (M), nitrogen (N), nitrogen + phosphorus (NP), and nitrogen + phosphorus + manure (NPM). Soil N2O fluxes in the highland winter wheat field were highly variable temporally and thus were fertilization dependent. The highest fluxes occurred in the warmer and wetter seasons. Relative to CK, M slightly increased N2O flux while N, NP and NPM treatments significantly increased N2O fluxes. The fertilizer induced increase in N2O flux occurred mainly in the first 30 days after fertilization. The increases were smaller in the relatively warm and dry year than in the cold and wet year. Combining phosphorous and/or manure with mineral N fertilizer partly offset the nitrogen fertilizer induced increase in N2O flux. N2O fluxes at the seedling stage were mainly controlled by nitrogen fertilization, while fluxes at other plant growth stages were influenced by plant and environmental conditions. The cumulative N2O emissions were always higher in the fertilized treatments than in the non-fertilized treatment (CK). Mineral and manure nitrogen fertilizer enhanced N2O emissions in wetter years compared to dryer years. Phosphorous fertilizer offset 0.78 and 1.98 kg N2O ha−1 increases, while manure + phosphorous offset 0.67 and 1.64 kg N2O ha−1 increases by N fertilizer for the two observation years. Our results suggested that the contribution of single N fertilizer on N2O emission was larger than that of NP and NPM and that manure and phosphorous had important roles in offsetting mineral N fertilizer induced N2O emissions. Relative to agricultural production and N2O emission, manure fertilization (M) should be recommended while single N fertilization (N) should be avoided for the highland winter wheat due to the higher biomass and grain yield and less N2O flux and annual emission in M than in N.


2010 ◽  
Vol 7 (10) ◽  
pp. 3301-3310 ◽  
Author(s):  
X. R. Wei ◽  
M. D. Hao ◽  
X. H. Xue ◽  
P. Shi ◽  
R. Horton ◽  
...  

Abstract. Nitrous oxide (N2O) is an important greenhouse gas. N2O emissions from soils vary with fertilization and cropping practices. The response of N2O emission to fertilization of agricultural soils plays an important role in global N2O emission. The objective of this study was to assess the seasonal pattern of N2O fluxes and the annual N2O emissions from a rain-fed winter wheat (Triticum aestivum L.) field in the Loess Plateau of China. A static flux chamber method was used to measure soil N2O fluxes from 2006 to 2008. The study included 5 treatments with 3 replications in a randomized complete block design. Prior to initiating N2O measurements the treatments had received the same fertilization for 22 years. The fertilizer treatments were unfertilized control (CK), manure (M), nitrogen (N), nitrogen + phosphorus (NP), and nitrogen + phosphorus + manure (NPM). Soil N2O fluxes in the highland winter wheat field were highly variable temporally and thus were fertilization dependent. The highest fluxes occurred in the warmer and wetter seasons. Relative to CK, m slightly increased N2O flux while N, NP and NPM treatments significantly increased N2O fluxes. The fertilizer induced increase in N2O flux occurred mainly in the first 30 days after fertilization. The increases were smaller in the relatively warm and dry year than in the cold and wet year. Combining phosphorous and/or manure with mineral N fertilizer partly offset the nitrogen fertilizer induced increase in N2O flux. N2O fluxes at the seedling stage were mainly controlled by nitrogen fertilization, while fluxes at other plant growth stages were influenced by plant and environmental conditions. The cumulative N2O emissions were always higher in the fertilized treatments than in the non-fertilized treatment (CK). Mineral and manure nitrogen fertilizer enhanced N2O emissions in wetter years compared to dryer years. Phosphorous fertilizer offset 0.50 and 1.26 kg N2O-N ha−1 increases, while manure + phosphorous offset 0.43 and 1.04 kg N2O-N ha−1 increases by N fertilizer for the two observation years. Our results suggested that the contribution of single N fertilizer on N2O emission was larger than that of NP and NPM and that manure and phosphorous had important roles in offsetting mineral N fertilizer induced N2O emissions. Relative to agricultural production and N2O emission, manure fertilization (M) should be recommended while single N fertilization (N) should be avoided for the highland winter wheat due to the higher biomass and grain yield and lower N2O flux and annual emission in m than in N.


Sign in / Sign up

Export Citation Format

Share Document