Seeing is believing: Can biofilm diagnostics guide individualized therapy in endocarditis?

2020 ◽  
Author(s):  
Judith Kikhney ◽  
Laura Kursawe ◽  
Swb Eichinger ◽  
Walter Eichinger ◽  
Julia Schmidt ◽  
...  

<p><strong>Introduction</strong></p> <p>In Infective Endocarditis (IE), early diagnosis of the causative microorganism is crucial for correct antibiotic therapy, which improves the patients’ outcome.</p> <p><strong>Objectives</strong></p> <p>We studies the impact of biofilm formation in IE samples.</p> <p><strong>Materials & methods</strong></p> <p>We used Fluorescence in situ Hybridization (FISH) combined with 16S rRNA-gene PCR and sequencing to visualize and identify the infectious agents in native as well as prosthetic valves and to study any biofilm formation. The signal intensity of the fluorescence-labelled FISH probes correlates to a high ribosome content of the bacteria indicating metabolic activity at the time point of surgery. We developed a spacer FISH assay for the detection of the 16S-23S intergenic spacer region that is only present in actively transcribing cells to detect the activity of bacterial cells more precisely on a single cell level.</p> <p><strong>Results</strong></p> <p>FISH visualized bacteria in the heart valves ranging from single cells to highly organized biofilms. Interestingly, we found FISH positive bacteria in culture negative samples and samples from patients under antibiotic therapy. Using the spacer FISH, we visualized positive microbial cells in heart valves of patients under adequate therapy. Preliminary data point to a correlation between the biofilm state and treatment inefficiency.</p> <p><strong>Conclusion</strong></p> <p>FISH/PCR not only allows timely identification of the pathogens in IE, but also biofilm-staging and visualization of the effect of antimicrobial therapy at time of surgery. The technique provides crucial information for successful targeted antibiotic therapy, and it might guide therapeutical decisions in relation to biofilm state in the future.</p>

2006 ◽  
Vol 106 (3) ◽  
pp. 297-306 ◽  
Author(s):  
A. Llorens ◽  
M.J. Hinojo ◽  
R. Mateo ◽  
M.T. González-Jaén ◽  
F.M. Valle-Algarra ◽  
...  

2014 ◽  
Vol 81 (1) ◽  
pp. 48-58 ◽  
Author(s):  
Brandee L. Stone ◽  
Nathan M. Russart ◽  
Robert A. Gaultney ◽  
Angela M. Floden ◽  
Jefferson A. Vaughan ◽  
...  

ABSTRACTScant attention has been paid to Lyme disease,Borrelia burgdorferi,Ixodes scapularis, or reservoirs in eastern North Dakota despite the fact that it borders high-risk counties in Minnesota. Recent reports ofB. burgdorferiandI. scapularisin North Dakota, however, prompted a more detailed examination. Spirochetes cultured from the hearts of five rodents trapped in Grand Forks County, ND, were identified asB. burgdorferi sensu latothrough sequence analyses of the 16S rRNA gene, the 16S rRNA gene-ileTintergenic spacer region,flaB,ospA,ospC, andp66. OspC typing revealed the presence of groups A, B, E, F, L, and I. Two rodents were concurrently carrying multiple OspC types. Multilocus sequence typing suggested the eastern North Dakota strains are most closely related to those found in neighboring regions of the upper Midwest and Canada. BALB/c mice were infected withB. burgdorferiisolate M3 (OspC group B) by needle inoculation or tick bite. Tibiotarsal joints and ear pinnae were culture positive, andB. burgdorferiM3 was detected by quantitative PCR (qPCR) in the tibiotarsal joints, hearts, and ear pinnae of infected mice. Uninfected larvalI. scapularisticks were able to acquireB. burgdorferiM3 from infected mice; M3 was maintained inI. scapularisduring the molt from larva to nymph; and further, M3 was transmitted from infectedI. scapularisnymphs to naive mice, as evidenced by cultures and qPCR analyses. These results demonstrate that isolate M3 is capable of disseminated infection by both artificial and natural routes of infection. This study confirms the presence of unique (nonclonal) and infectiousB. burgdorferipopulations in eastern North Dakota.


2004 ◽  
Vol 50 (12) ◽  
pp. 1061-1067 ◽  
Author(s):  
Laura B Regassa ◽  
Kimberly M Stewart ◽  
April C Murphy ◽  
Frank E French ◽  
Tao Lin ◽  
...  

Spiroplasma species (Mollicutes: Spiroplasmataceae) are associated with a wide variety of insects, and serology has classified this genus into 34 groups, 3 with subgroups. The 16S rRNA gene has been used for phylogenetic analysis of spiroplasmas, but this approach is uninformative for group VIII because the serologically distinct subgroups generally have similarity coefficients >0.990. Therefore, we investigated the utility of the 16S–23S rRNA spacer region as a means to differentiate closely related subgroups or strains. We generated intergenic sequences and detailed serological profiles for 8 group VIII Spiroplasma strains. Sequence analyses using Maximum Parsimony, Neighbor Joining, and Maximum Likelihood placed the strains into 2 clades. One clade consisted of strains BARC 2649 and GSU5367. The other clade was divided into clusters containing representatives of the 3 designated group VIII subgroups (EA-1, DF-1, and TAAS-1) and 3 previously unclassified strains. The stability of the positions of the strains in various analytical models and the ability to provide robust support for groupings tentatively supported by serology indicates that the 16S–23S intergenic rDNA sequence will prove useful in intragroup analysis of group VIII spiroplasmas.Key words: Mollicutes, Spiroplasma, phylogeny, Tabanidae.


2000 ◽  
Vol 14 (3) ◽  
pp. 181-189 ◽  
Author(s):  
S Ghosh ◽  
A Debnath ◽  
A Sil ◽  
S De ◽  
DJ Chattopadhyay ◽  
...  

2016 ◽  
Vol 7 ◽  
Author(s):  
Sima Tokajian ◽  
Nahla Issa ◽  
Tamara Salloum ◽  
Joe Ibrahim ◽  
Maya Farah

2006 ◽  
Vol 189 (4) ◽  
pp. 1238-1243 ◽  
Author(s):  
Page W. Caufield ◽  
Deepak Saxena ◽  
David Fitch ◽  
Yihong Li

ABSTRACT There are suggestions that the phylogeny of Streptococcus mutans, a member of the human indigenous biota that is transmitted mostly mother to child, might parallel the evolutionary history of its human host. The relatedness and phylogeny of plasmid-containing strains of S. mutans were examined based on chromosomal DNA fingerprints (CDF), a hypervariable region (HVR) of a 5.6-kb plasmid, the rRNA gene intergenic spacer region (IGSR), serotypes, and the genotypes of mutacin I and II. Plasmid-containing strains were studied because their genetic diversity was twice as great as that of plasmid-free strains. The CDF of S. mutans from unrelated human hosts were unique, except those from Caucasians, which were essentially identical. The evolutionary history of the IGSR, with or without the serotype and mutacin characters, clearly delineated an Asian clade. Also, a continuous association with mutacin II could be reconstructed through an evolutionary lineage with the IGSR, but not for serotype e. DNA sequences from the HVR of the plasmid produced a well-resolved phylogeny that differed from the chromosomal phylogeny, indicating that the horizontal transfer of the plasmid may have occurred multiple times. The plasmid phylogeny was more congruent with serotype e than with mutacin II evolution, suggesting a possible functional correlation. Thus, the history of this three-tiered relationship between human, bacterium, and plasmid supported both coevolution and independent evolution.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Telma Blanca Lombardo Bedran ◽  
Jabrane Azelmat ◽  
Denise Palomari Spolidorio ◽  
Daniel Grenier

Streptococcus mutans, the predominant bacterial species associated with dental caries, can enter the bloodstream and cause infective endocarditis. The aim of this study was to investigateS. mutansbiofilm formation and adherence to endothelial cells induced by human fibrinogen. The putative mechanism by which biofilm formation is induced as well as the impact of fibrinogen onS. mutansresistance to penicillin was also evaluated. Bovine plasma dose dependently induced biofilm formation byS. mutans. Of the various plasma proteins tested, only fibrinogen promoted the formation of biofilm in a dose-dependent manner. Scanning electron microscopy observations revealed the presence of complex aggregates of bacterial cells firmly attached to the polystyrene support.S. mutansin biofilms induced by the presence of fibrinogen was markedly resistant to the bactericidal effect of penicillin. Fibrinogen also significantly increased the adherence ofS. mutansto endothelial cells. NeitherS. mutanscells nor culture supernatants converted fibrinogen into fibrin. However, fibrinogen is specifically bound to the cell surface ofS. mutansand may act as a bridging molecule to mediate biofilm formation. In conclusion, our study identified a new mechanism promotingS. mutansbiofilm formation and adherence to endothelial cells which may contribute to infective endocarditis.


Sign in / Sign up

Export Citation Format

Share Document