scholarly journals Relative impact of insolation and the Indo-Pacific warm pool surface temperature on the East Asia summer monsoon during the MIS-13 interglacial

2014 ◽  
Vol 10 (5) ◽  
pp. 1645-1657 ◽  
Author(s):  
Q. Z. Yin ◽  
U. K. Singh ◽  
A. Berger ◽  
Z. T. Guo ◽  
M. Crucifix

Abstract. During Marine Isotope Stage (MIS)-13, an interglacial about 500 000 years ago, the East Asian summer monsoon (EASM) was suggested exceptionally strong by different proxies in China. However, MIS-13 is a weak interglacial in marine oxygen isotope records and has relatively low CO2 and CH4 concentrations compared to other interglacials of the last 800 000 years. In the meantime, the sea surface temperature (SST) reconstructions have shown that the warm pool was relatively warm during MIS-13. Based on climate modeling experiments, this study aims at investigating whether a warmer Indo-Pacific warm pool (IPWP) can explain the exceptionally strong EASM occurring during the relatively cool interglacial MIS-13. The relative contributions of insolation and of the IPWP SST as well as their synergism are quantified through experiments with the Hadley Centre atmosphere model, HadAM3, and using the factor separation technique. The SST of the IPWP has been increased based on geological reconstructions. Our results show that the pure impact of a strong summer insolation contributes to strengthen significantly the summer precipitation in northern China but only little in southern China. The pure impact of enhanced IPWP SST reduces, slightly, the summer precipitation in both northern and southern China. However, the synergism between insolation and enhanced IPWP SST contributes to a large increase of summer precipitation in southern China but to a slight decrease in northern China. Therefore, the ultimate role of enhanced IPWP SST is to reinforce the impact of insolation in southern China but reduce its impact in northern China. We conclude that a warmer IPWP helps to explain the strong MIS-13 EASM precipitation in southern China as recorded in proxy data, but another explanation is needed for northern China.

2014 ◽  
Vol 10 (2) ◽  
pp. 1025-1051 ◽  
Author(s):  
Q. Z. Yin ◽  
U. K. Singh ◽  
A. Berger ◽  
Z. T. Guo ◽  
M. Crucifix

Abstract. During Marine Isotope Stage (MIS) 13, an interglacial about 500 000 years ago, the East Asian summer monsoon (EASM) was suggested exceptionally strong by different proxies in China. However, MIS-13 is a weak interglacial in marine oxygen isotope records and has relatively low CO2 and CH4 concentrations compared to other interglacials of the last 800 000 years. In the mean time, the sea surface temperature (SST) reconstructions show that the Western Pacific Warm Pool was relatively warm during MIS-13. Based on climate modeling experiments, this study aims at investigating whether this Warm Pool warming could explain the exceptionally strong EASM occurring during the relatively cool interglacial MIS-13. The individual contributions of insolation and of the Warm Pool SST as well as their synergism are quantified through experiments with the Hadley Centre atmosphere model, HadAM3 and using the factor separation technique. The SST over the Warm Pool region has been increased based on geological reconstructions. Our results show that the pure impact of a strong summer insolation contributes to strengthen significantly the summer precipitation in northern China but only little in southern China. The pure impact of enhanced Warm Pool SST reduces, slightly, the summer precipitation in both northern and southern China. However, the synergism between insolation and enhanced Warm Pool SST contributes to a large increase of summer precipitation in southern China but to a decrease in northern China. Therefore, the ultimate role of enhanced Warm Pool SST reinforces the impact of insolation in southern China but reduces its impact in northern China. We conclude that enhanced SST over the Warm Pool region does help to explain the strong MIS-13 EASM precipitation in southern China as recorded in proxy data, but other explanation is needed for explaining the exceptionally strong EASM in northern China.


2018 ◽  
Vol 14 (11) ◽  
pp. 1805-1817 ◽  
Author(s):  
Haiwei Zhang ◽  
Hai Cheng ◽  
Yanjun Cai ◽  
Christoph Spötl ◽  
Gayatri Kathayat ◽  
...  

Abstract. Although the collapses of several Neolithic cultures in China are considered to have been associated with abrupt climate change during the 4.2 ka BP event (4.2–3.9 ka BP), the timing and nature of this event and the spatial distribution of precipitation between northern and southern China are still controversial. The hydroclimate of this event in southeastern China is still poorly known, except for a few published records from the lower reaches of the Yangtze River. In this study, a high-resolution record of monsoon precipitation between 5.3 and 3.57 ka BP based on a stalagmite from Shennong Cave, Jiangxi Province, southeast China, is presented. Coherent variations in δ18O and δ13C reveal that the climate in this part of China was dominantly wet between 5.3 and 4.5 ka BP and mostly dry between 4.5 and 3.57 ka BP, interrupted by a wet interval (4.2–3.9 ka BP). A comparison with other records from monsoonal China suggests that summer monsoon precipitation decreased in northern China but increased in southern China during the 4.2 ka BP event. We propose that the weakened East Asian summer monsoon controlled by the reduced Atlantic Meridional Overturning Circulation resulted in this contrasting distribution of monsoon precipitation between northern and southern China. During the 4.2 ka BP event the rain belt remained longer at its southern position, giving rise to a pronounced humidity gradient between northern and southern China.


2011 ◽  
Vol 50 (11) ◽  
pp. 2270-2282 ◽  
Author(s):  
Libin Yan ◽  
Xiaodong Liu ◽  
Ping Yang ◽  
Zhi-Yong Yin ◽  
Gerald R. North

AbstractThe regional coupled climate–chemistry/aerosol model (RegCM3) is used to investigate the difference in the spatial distribution of aerosol optical depth (AOD) between a strong summer monsoon year (SSMY; July 2003) and a weak summer monsoon year (WSMY; July 2002) under the actual- and same-emission scenarios. It is shown that the intensity of the Asian summer monsoon is primarily responsible for the AOD spatial distribution anomaly in midsummer over East Asia. Specifically, the AOD over southern China, upwind of the Asian summer monsoon, is greater in WSMY than in SSMY, but the opposite is observed for the AOD downwind over northern China and the Korean Peninsula. The AOD spatial distribution patterns simulated on the basis of the actual emission inventories for the SSMY and WSMY do not substantially differ from their counterparts that are based on the same emission inventory, confirming that the monsoon circulation, rather than local emissions or dry and wet deposition processes, is the predominant factor determining the regional AOD distribution. These modeling results are consistent with the analyses based on the Moderate Resolution Imaging Spectroradiometer (MODIS) products, NCAR–Department of Energy wind fields, and air parcel movements according to the 7-day trajectories of air parcels determined by the Hybrid Single-Particle Lagrangian Integrated Trajectory model.


2021 ◽  
pp. 1-38
Author(s):  
Xudong Wang ◽  
Shang-Ping Xie ◽  
Zhaoyong Guan ◽  
Minyang Wang

AbstractThe summer intraseasonal oscillation (ISO) is characterized by a northward-moving rain band in the Indo-western Pacific warm pool region. Physical origin of the ISO is not fully understood, masked by strong interaction of convection and circulation. This study examines intraseasonal to interannual variability during June to August over the Indo-western Pacific warm pool region. The results show that the tropical Northwest Pacific anomalous anticyclone (NWP-AAC) is a fundamental mode on both intraseasonal and interannual timescales, destabilized by the monsoon mean state, specifically through barotropic energy conversion and convective feedback in the low-level confluence between the monsoon westerlies and easterly trade winds. On the interannual timescale, the NWP-AAC shows a biennial tendency, reversing phase from the summer of El Niño to the summer that follows; the AAC in post-El Niño summer is excited indirectly through sea surface temperature anomalies in the Indo-NWP. On the intraseasonal timescale, the column-integrated moisture advection causes the NWP-AAC-related convection propagates northward. Our results provide a unifying view of multi-scale Asian summer monsoon variability, with important implications for subseasonal to seasonal prediction.


2019 ◽  
Vol 11 (2) ◽  
pp. 542 ◽  
Author(s):  
Yong-sheng Wang

Food security has received wide attention in China for a long time due to the challenges of a huge population and limited farmland area. Under conditions of rapid urbanization, the food scenario has changed, creating major challenges for massive populations in China. This paper intends to reveal the impact of urbanization on food security and to propose strategies for mitigating the threats to it. Total grain production has continuously increased, but most of the grain production has been distributed in the northern region since 2006. Although the per capita rural income has increased significantly since 1980, the agricultural income ratio has consistently declined from 56.13% in 1983 to 26.61% in 2012. A dramatic shift in food consumption away from grain towards meat, poultry, eggs, milk and liquor has been found in both rural and urban areas. The faster agricultural water consumption growth in northern China over southern China helped close the gap. There has been net increase of cultivated land in northern China, whereas southern China has seen a net decrease. The medium- and low-level cultivation ratios of land were 52.84% and 17.69%, respectively, in 2015. This paper concluded that food security in China could be ensured by increasing production and optimizing consumption. It suggested that enhanced grain production capacity, strict water management, and land consolidation engineering as well as agricultural industrialization could be used for maintaining grain production. Food consumption itself can be managed by optimizing resident dietary pattern, reducing food waste, adjusting grain consumption structure and moderating food imports policy.


2020 ◽  
Vol 7 (3) ◽  
pp. 516-533 ◽  
Author(s):  
Jianchun Bian ◽  
Dan Li ◽  
Zhixuan Bai ◽  
Qian Li ◽  
Daren Lyu ◽  
...  

Abstract Due to its surrounding strong and deep Asian summer monsoon (ASM) circulation and active surface pollutant emissions, surface pollutants are transported to the stratosphere from the Tibetan Plateau region, which may have critical impacts on global climate through chemical, microphysical and radiative processes. This article reviews major recent advances in research regarding troposphere–stratosphere transport from the region of the Tibetan Plateau. Since the discovery of the total ozone valley over the Tibetan Plateau in summer from satellite observations in the early 1990s, new satellite-borne instruments have become operational and have provided significant new information on atmospheric composition. In addition, in situ measurements and model simulations are used to investigate deep convection and the ASM anticyclone, surface sources and pathways, atmospheric chemical transformations and the impact on global climate. Also challenges are discussed for further understanding critical questions on microphysics and microchemistry in clouds during the pathway to the global stratosphere over the Tibetan Plateau.


2009 ◽  
Vol 28 (3-4) ◽  
pp. 345-353 ◽  
Author(s):  
Weiguo Zhang ◽  
Lizhong Yu ◽  
Min Lu ◽  
Xiangmin Zheng ◽  
Junfeng Ji ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document