scholarly journals Deglacial evolution of regional Antarctic climate and Southern Ocean conditions in transient climate simulations

2019 ◽  
Vol 15 (1) ◽  
pp. 189-215 ◽  
Author(s):  
Daniel P. Lowry ◽  
Nicholas R. Golledge ◽  
Laurie Menviel ◽  
Nancy A. N. Bertler

Abstract. Constraining Antarctica's climate evolution since the end of the Last Glacial Maximum (∼18 ka) remains a key challenge, but is important for accurately projecting future changes in Antarctic ice sheet mass balance. Here we perform a spatial and temporal analysis of two transient deglacial climate simulations, one using a fully coupled GCM (TraCE-21ka) and one using an intermediate complexity model (LOVECLIM DGns), to determine regional differences in deglacial climate evolution and identify the main strengths and limitations of the models in terms of climate variables that impact ice sheet mass balance. The greatest continental surface warming is observed over the continental margins in both models, with strong correlations between surface albedo, sea ice coverage, and surface air temperature along the coasts, as well as regions with the greatest decrease in ice surface elevation in TraCE-21ka. Accumulation–temperature scaling relationships are fairly linear and constant in the continental interior, but exhibit higher variability in the early to mid-Holocene over coastal regions. Circum-Antarctic coastal ocean temperatures at grounding line depths are highly sensitive to the meltwater forcings prescribed in each simulation, which are applied in different ways due to limited paleo-constraints. Meltwater forcing associated with the Meltwater Pulse 1A (MWP1A) event results in subsurface warming that is most pronounced in the Amundsen and Bellingshausen Sea sector in both models. Although modelled centennial-scale rates of temperature and accumulation change are reasonable, clear model–proxy mismatches are observed with regard to the timing and duration of the Antarctic Cold Reversal (ACR) and Younger Dryas–early Holocene warming, which may suggest model bias in large-scale ocean circulation, biases in temperature reconstructions from proxy records, or that the MWP1A and 1B events are inadequately represented in these simulations. The incorporation of dynamic ice sheet models in future transient climate simulations could aid in improving meltwater forcing representation, and thus model–proxy agreement, through this time interval.

2018 ◽  
Author(s):  
Daniel P. Lowry ◽  
Nicholas R. Golledge ◽  
Laurie Menviel ◽  
Nancy A. N. Bertler

Abstract. Constraining Antarctica′s climate evolution since the end of the Last Glacial Maximum (∼18 kyr) remains a key challenge, but is important for accurately projecting future changes in Antarctic ice sheet mass balance. Here we perform spatial and temporal analysis of two transient deglacial climate simulations, one using a fully coupled GCM and one using an intermediate complexity model, to (1) better understand the mechanisms driving regional differences observed in paleoclimate records, and (2) identify the main strengths and limitations of the models in terms of parameters that impact ice sheet mass balance. The climate simulations show the greatest continental surface warming over the continental margins and regions with the greatest decrease in ice surface elevation, suggesting that sea ice-albedo feedbacks and ice sheet dynamics likely played strong roles in driving regional surface temperature differences during the deglaciation. The spatial distributions of simulated accumulation changes are quite distinct, with the intermediate complexity model experiencing resolution-related bias along the East Antarctic coast. Accumulation-temperature scaling relationships are fairly linear and constant further inland, but exhibit higher variability in the early to mid-Holocene over coastal regions. This climatic shift in the Holocene coincides with a weakening of the Amundsen Sea Low and a reduction in sea ice coverage. Circum-Antarctic coastal ocean temperatures at grounding line depths are highly sensitive to the meltwater forcings prescribed in each simulation, which are applied in different ways due to limited paleo-constraints. Although modelled centennial-scale rates of temperature and accumulation change are reasonable, clear model-proxy mismatches are observed with regard to the timing and duration of the Antarctic Cold Reversal (ACR) and Younger Dryas/early Holocene warming, suggesting that the Meltwater Pulse 1A and 1B events may be inadequately represented in these simulations. The incorporation of dynamic ice sheet models in future transient climate simulations could aid in improving meltwater forcing representation, and thus model-proxy agreement, through this time interval.


2016 ◽  
Vol 57 (73) ◽  
pp. 69-78 ◽  
Author(s):  
Christopher M. Little ◽  
Nathan M. Urban

ABSTRACTProjections of ice-sheet mass balance require regional ocean warming projections derived from atmosphere-ocean general circulation models (AOGCMs). However, the coarse resolution of AOGCMs: (1) may lead to systematic or AOGCM-specific biases and (2) makes it difficult to identify relevant water masses. Here, we employ a large-scale metric of Antarctic Shelf Bottom Water (ASBW) to investigate circum-Antarctic temperature biases and warming projections in 19 different Coupled Model Intercomparison Project Phase 5 (CMIP5) AOGCMs forced with two different ‘representative concentration pathways’ (RCPs). For high-emissions RCP 8.5, the ensemble mean 21st century ASBW warming is 0.66, 0.74 and 0.58°C for the Amundsen, Ross and Weddell Seas (AS, RS and WS), respectively. RCP 2.6 ensemble mean projections are substantially lower: 0.21, 0.26, and 0.19°C. All distributions of regional ASBW warming are positively skewed; for RCP 8.5, four AOGCMs project warming of greater than 1.8°C in the RS. Across the ensemble, there is a strong, RCP-independent, correlation between WS and RS warming. AS warming is more closely linked to warming in the Southern Ocean. We discuss possible physical mechanisms underlying the spatial patterns of warming and highlight implications of these results on strategies for forcing ice-sheet mass balance projections.


2015 ◽  
Vol 78 (4) ◽  
pp. 046801 ◽  
Author(s):  
Shfaqat A Khan ◽  
Andy Aschwanden ◽  
Anders A Bjørk ◽  
John Wahr ◽  
Kristian K Kjeldsen ◽  
...  

2016 ◽  
Vol 2 (5) ◽  
pp. e1501538 ◽  
Author(s):  
Aurélien Mordret ◽  
T. Dylan Mikesell ◽  
Christopher Harig ◽  
Bradley P. Lipovsky ◽  
Germán A. Prieto

The Greenland ice sheet presently accounts for ~70% of global ice sheet mass loss. Because this mass loss is associated with sea-level rise at a rate of 0.7 mm/year, the development of improved monitoring techniques to observe ongoing changes in ice sheet mass balance is of paramount concern. Spaceborne mass balance techniques are commonly used; however, they are inadequate for many purposes because of their low spatial and/or temporal resolution. We demonstrate that small variations in seismic wave speed in Earth’s crust, as measured with the correlation of seismic noise, may be used to infer seasonal ice sheet mass balance. Seasonal loading and unloading of glacial mass induces strain in the crust, and these strains then result in seismic velocity changes due to poroelastic processes. Our method provides a new and independent way of monitoring (in near real time) ice sheet mass balance, yielding new constraints on ice sheet evolution and its contribution to global sea-level changes. An increased number of seismic stations in the vicinity of ice sheets will enhance our ability to create detailed space-time records of ice mass variations.


2013 ◽  
Vol 7 (6) ◽  
pp. 1901-1914 ◽  
Author(s):  
W. Colgan ◽  
S. Luthcke ◽  
W. Abdalati ◽  
M. Citterio

Abstract. We use a Monte Carlo approach to invert a spherical harmonic representation of cryosphere-attributed mass change in order to infer the most likely underlying mass changes within irregularly shaped ice-covered areas at nominal 26 km resolution. By inverting a spherical harmonic representation through the incorporation of additional fractional ice coverage information, this approach seeks to eliminate signal leakage between non-ice-covered and ice-covered areas. The spherical harmonic representation suggests a Greenland mass loss of 251 ± 25 Gt a−1 over the December 2003 to December 2010 period. The inversion suggests 218 ± 20 Gt a−1 was due to the ice sheet proper, and 34 ± 5 Gt a−1 (or ~14%) was due to Greenland peripheral glaciers and ice caps (GrPGICs). This mass loss from GrPGICs exceeds that inferred from all ice masses on both Ellesmere and Devon islands combined. This partition therefore highlights that GRACE-derived "Greenland" mass loss cannot be taken as synonymous with "Greenland ice sheet" mass loss when making comparisons with estimates of ice sheet mass balance derived from techniques that sample only the ice sheet proper.


The Holocene ◽  
2020 ◽  
Vol 31 (1) ◽  
pp. 66-72
Author(s):  
Ran Zhang ◽  
Dabang Jiang ◽  
Zhigang Cheng

To date, climate records have mainly shown three different trends of Holocene precipitation evolution in northeastern (NE) China, and the underlying mechanisms remain unclear. Here, we use model results from Holocene transient climate simulations conducted by the Community Climate System Model version 3 to investigate the evolution of precipitation in NE China and the associated mechanisms. The model results indicate that precipitation changes within NE China show obvious spatial discrepancies. In particular, the annual precipitation maximum occurs in the early Holocene for the western subregion, while it occurs in the mid-late Holocene for the eastern subregion. These results show two different trends of Holocene precipitation within NE China capturing the large-scale precipitation changes appearing in climate records. These spatial features are closely related to the gradual weakening of the East Asian summer monsoon during the Holocene and are mainly attributed to the combined effects of orbital forcing and the ice sheet. Changes in orbital parameters play a major role in the decreased precipitation in the western subregion, while changes in the ice sheet contribute more to the increased precipitation in the eastern subregion. The observed model-data discrepancy partly relates to the low horizontal resolution employed and the physical processes and parameterizations of the model used.


1984 ◽  
Vol 30 (105) ◽  
pp. 131-139 ◽  
Author(s):  
L. W. Morland ◽  
G. D. Smith ◽  
G. S. Boulton

AbstractThe sliding law is defined as a basal boundary condition for the large-scale bulk ice flow, relating the tangential tractionτb, overburden pressurepb, and tangential velocityubon a smoothed-out mean bed contour. This effective bed is a lower boundary viewed on the scale of the bulk ice flow and is not the physical ice/rock or sediment interface. The sliding relation reflects on the same scale the complex motion taking place in the neighbourhood of the physical interface. The isothermal steady-state ice-sheet analysis of Morland and Johnson (1980, 1982) is applied to known surface profiles from the Greenland ice sheet and Devon Island ice cap, with their corresponding mass-balance distributions, to determineτb,pb, andubfor each case. These basal estimates are used in turn to construct, using least-squares correlation, polynomial representations for an overburden dependenceλ(pb) in the adopted form of sliding lawτb═λ(pb)ub1/mwithm ≥1.The two different data sets determine functionsλ(pb) of very different magnitudes, reflecting very different basal conditions. A universal sliding law must therefore contain more general dependence on basal conditions, but the two relations determined appear to describe the two extremes. Hence use of both relations in turn to determine profiles compatible with given mass-balance distributions can be expected to yield extremes of the possible profiles, and further to show the sensitivity of profile form to variation of the sliding relation. The theory is designed as a basis for reconstruction of former ice sheets and their dynamics which are related to the two fundamental determinants of surface mass balance and basal boundary condition.


2020 ◽  
Author(s):  
Alexios Theofilopoulos ◽  
Andreas Born

<p>Our knowledge of the past surface mass balance on Greenland depends on scarce paleoclimate reconstructions and uncertain climate simulations. However, reconstructions of the internal layering of the ice sheet can provide an independent dataset of accumulation. The thickness of isochronal layers is directly affected by accumulation, but modified over time by the flow of ice. Existing methods can disentangle these two effects only near the ice divide where assumptions of stationarity may be justified. To solve this problem and to obtain a spatially comprehensive reconstruction of accumulation, we use an ice sheet model with an isochronal grid. Thinning rates are calculated prognostically by the model and can be used to define an inverse problem that can be solved iteratively. The only input data is the final layer thickness of the target, e.g., reconstructed radio echo layers from the Greenland ice sheet. To test this method and its limitations, we reconstruct the accumulation histories from the stratigraphies of simulations for which the idealized accumulation time series and spatial distributions are known. These simulations represent a two-dimensional cross section of the Greenland ice sheet. The results are robust to a wide range of realistic variations in accumulation for all but the layers closest to the bedrock where the deformation by the flow is most severe.</p>


2009 ◽  
Vol 21 (5) ◽  
pp. 413-426 ◽  
Author(s):  
I. Allison ◽  
R.B. Alley ◽  
H.A. Fricker ◽  
R.H. Thomas ◽  
R.C. Warner

AbstractDetermining the mass balance of the Greenland and Antarctic ice sheets (GIS and AIS) has long been a major challenge for polar science. But until recent advances in measurement technology, the uncertainty in ice sheet mass balance estimates was greater than any net contribution to sea level change. The Fourth Assessment Report of the Intergovernmental Panel on Climate Change (AR4) was able, for the first time, to conclude that, taken together, the GIS and AIS have probably been contributing to sea level rise over the period 1993–2003 at an average rate estimated at 0.4 mm yr-1. Since the cut-off date for work included in AR4, a number of further studies of the mass balance of GIS and AIS have been made using satellite altimetry, satellite gravity measurements and estimates of mass influx and discharge using a variety of techniques. Overall, these studies reinforce the conclusion that the ice sheets are contributing to present sea level rise, and suggest that the rate of loss from GIS has recently increased. The largest unknown in the projections of sea level rise over the next century is the potential for rapid dynamic collapse of ice sheets.


Sign in / Sign up

Export Citation Format

Share Document