scholarly journals Reconstructions of droughts in Germany since 1500 – combining hermeneutic information and instrumental records in historical and modern perspectives

2020 ◽  
Vol 16 (4) ◽  
pp. 1207-1222
Author(s):  
Rüdiger Glaser ◽  
Michael Kahle

Abstract. The present article deals with the reconstruction of drought time series in Germany since 1500. The reconstructions are based on historical records from the virtual research environment Tambora (tambora.org, 2018) and official instrumental records. The historical records and recent data were related to each other through modern index calculations, drought categories and their historical equivalents. Historical and modern written documents are also taken into account to analyze the climatic effects and consequences on the environment and society. These pathways of effects are derived and combined with different drought categories. The derived historical precipitation index (HPI) is correlated with the standardized precipitation index (SPI). Finally, a historical drought index (HDI) and a historical wet index (HWI) are derived from the basic monthly precipitation index (PI) from 1500 onward. Both are combined for the historical humidity index (HHI). On this basis, the long-term development of dryness and drought in Germany since 1500, as well as medium-term deviations of drier and wetter periods and individual extreme events, is presented and discussed.

2013 ◽  
Vol 17 (6) ◽  
pp. 2359-2373 ◽  
Author(s):  
E. Dutra ◽  
F. Di Giuseppe ◽  
F. Wetterhall ◽  
F. Pappenberger

Abstract. Vast parts of Africa rely on the rainy season for livestock and agriculture. Droughts can have a severe impact in these areas, which often have a very low resilience and limited capabilities to mitigate drought impacts. This paper assesses the predictive capabilities of an integrated drought monitoring and seasonal forecasting system (up to 5 months lead time) based on the Standardized Precipitation Index (SPI). The system is constructed by extending near-real-time monthly precipitation fields (ECMWF ERA-Interim reanalysis and the Climate Anomaly Monitoring System–Outgoing Longwave Radiation Precipitation Index, CAMS-OPI) with monthly forecasted fields as provided by the ECMWF seasonal forecasting system. The forecasts were then evaluated over four basins in Africa: the Blue Nile, Limpopo, Upper Niger, and Upper Zambezi. There are significant differences in the quality of the precipitation between the datasets depending on the catchments, and a general statement regarding the best product is difficult to make. The generally low number of rain gauges and their decrease in the recent years limits the verification and monitoring of droughts in the different basins, reinforcing the need for a strong investment on climate monitoring. All the datasets show similar spatial and temporal patterns in southern and north-western Africa, while there is a low correlation in the equatorial area, which makes it difficult to define ground truth and choose an adequate product for monitoring. The seasonal forecasts have a higher reliability and skill in the Blue Nile, Limpopo and Upper Niger in comparison with the Zambezi. This skill and reliability depend strongly on the SPI timescale, and longer timescales have more skill. The ECMWF seasonal forecasts have predictive skill which is higher than using climatology for most regions. In regions where no reliable near-real-time data is available, the seasonal forecast can be used for monitoring (first month of forecast). Furthermore, poor-quality precipitation monitoring products can reduce the potential skill of SPI seasonal forecasts in 2 to 4 months lead time.


Data ◽  
2020 ◽  
Vol 5 (4) ◽  
pp. 109
Author(s):  
Matthew P. Lucas ◽  
Clay Trauernicht ◽  
Abby G. Frazier ◽  
Tomoaki Miura

Spatially explicit, wall-to-wall rainfall data provide foundational climatic information but alone are inadequate for characterizing meteorological, hydrological, agricultural, or ecological drought. The Standardized Precipitation Index (SPI) is one of the most widely used indicators of drought and defines localized conditions of both drought and excess rainfall based on period-specific (e.g., 1-month, 6-month, 12-month) accumulated precipitation relative to multi-year averages. A 93-year (1920–2012), high-resolution (250 m) gridded dataset of monthly rainfall available for the State of Hawai‘i was used to derive gridded, monthly SPI values for 1-, 3-, 6-, 9-, 12-, 24-, 36-, 48-, and 60-month intervals. Gridded SPI data were validated against independent, station-based calculations of SPI provided by the National Weather Service. The gridded SPI product was also compared with the U.S. Drought Monitor during the overlapping period. This SPI product provides several advantages over currently available drought indices for Hawai‘i in that it has statewide coverage over a long historical period at high spatial resolution to capture fine-scale climatic gradients and monitor changes in local drought severity.


Atmosphere ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1268
Author(s):  
Bathsheba Musonda ◽  
Yuanshu Jing ◽  
Vedaste Iyakaremye ◽  
Moses Ojara

This study examines long-term spatial and temporal trends of drought characteristics based on the Standardized Precipitation Index at three different time scales (3, 6, and 12 months) over Zambia from 1981 to 2017. Drought characteristic conditions such as duration, severity, and intensity at monthly, seasonal, and annual levels were analyzed to investigate the drought patterns over Zambia. The results show a significant increase in drought events over the southwestern regions and a decrease over the northeastern regions. It is in this regard that two stations from different locations (southwest and northeast) were analyzed. The results show increasing trends of drought over Sesheke (southwest) and decreasing trends over Kasama (northeast). More drought impacts are felt over southern compared to northern areas, which poses a serious concern to both agriculture and hydrological industries over the drought-prone areas of Southern Zambia. However, the analysis further shows that droughts were more intense, persistent, and severe over the southwest, while moderate droughts were found in some few areas of Northeast Zambia. The Mann–Kendall test trend and slope indicated that both annual and seasonal drought have increased. However, drought increment at an annual level shows a low magnitude as compared to the seasonal level. This suggested the importance of evaluating drought at an interannual and seasonal time scale over Zambia. Specifically, the drought increased determinedly before 2010 and became erratic between 2010 and 2017 with considerable regional variation. Zambia experienced moderate to severe droughts during 1991–1992, 1994–1995, 2006–2005, and 2015–2016, which resulted in serious damages to the environment and society. According to the findings of this study, it is suggested that the implications of drought can be managed by creating strategies and adaptation measures.


2013 ◽  
Vol 2 (3) ◽  
pp. 63 ◽  
Author(s):  
Vera Potop ◽  
Constanta Boroneant ◽  
Mihaela Caian

We assess the changes in drought conditions during summer in the Republic of Moldova based on the Standardized Precipitation Index (SPI) calculated from monthly precipitation data simulated by the regional climatic model RegCM3. The RegCM simulations were conducted at a horizontal resolution of 10 km in the framework of EU-FP6 project -CECILIA. The domain was centered over Romania at 46°N, 25°E and included the Republic of Moldova.


Author(s):  
Laima TAPARAUSKIENĖ ◽  
Veronika LUKŠEVIČIŪTĖ

This study provides the analysis of drought conditions of vegetation period in 1982-2014 year in two Lithuanian regions: Kaunas and Telšiai. To identify drought conditions the Standardized Precipitation Index (SPI) was applied. SPI was calculated using the long-term precipitation record of 1982–2014 with in-situ meteorological data. Calculation step of SPI was taken 1 month considering only vegetation period (May, June, July, August, September). The purpose of investigation was to evaluate the humidity/aridity of vegetation period and find out the probability of droughts occurrence under Lithuanian climatic conditions. It was found out that according SPI results droughts occurred in 14.5 % of all months in Kaunas region and in 15.8 % in Telšiai region. Wet periods in Kaunas region occurred in 15.8 %, and in Telšiai region occurrence of wet periods was – 18.8 % from all evaluated months. According SPI evaluation near normal were 69.7 % of total months during period of investigation in Kaunas and respectively – 65.5 % in Telšiai. The probability for extremely dry period under Lithuania climatic conditions are pretty low – 3.0 % in middle Lithuania and 2.4 % in western part of Lithuania.


2005 ◽  
Vol 9 (5) ◽  
pp. 523-533 ◽  
Author(s):  
S. M. Vicente-Serrano ◽  
J. I. López-Moreno

Abstract. At present, the Standardized Precipitation Index (SPI) is the most widely used drought index to provide good estimations about the intensity, magnitude and spatial extent of droughts. The main advantage of the SPI in comparison with other indices is the fact that the SPI enables both determination of drought conditions at different time scales and monitoring of different drought types. It is widely accepted that SPI time scales affect different sub-systems in the hydrological cycle due to the fact that the response of the different water usable sources to precipitation shortages can be very different. The long time scales of SPI are related to hydrological droughts (river flows and reservoir storages). Nevertheless, few analyses empirically verify these statements or the usefulness of the SPI time scales to monitor drought. In this paper, the SPI at different time scales is compared with surface hydrological variables in a big closed basin located in the central Spanish Pyrenees. We provide evidence about the way in which the longer (>12 months) SPI time scales may not be useful for drought quantification in this area. In general, the surface flows respond to short SPI time scales whereas the reservoir storages respond to longer time scales (7–10 months). Nevertheless, important seasonal differences can be identified in the SPI-usable water sources relationships. This suggests that it is necessary to test the drought indices and time scales in relation to their usefulness for monitoring different drought types under different environmental conditions and water demand situations.


Sign in / Sign up

Export Citation Format

Share Document