scholarly journals South Pacific Subtropical High from the late Holocene to the end of the 21st century: insights from climate proxies and general circulation models

2020 ◽  
Vol 16 (1) ◽  
pp. 79-99 ◽  
Author(s):  
Valentina Flores-Aqueveque ◽  
Maisa Rojas ◽  
Catalina Aguirre ◽  
Paola A. Arias ◽  
Charles González

Abstract. The South Pacific Subtropical High (SPSH) is a predominant feature of the South American climate. The variability of this high-pressure center induces changes in the intensity of coastal alongshore winds and precipitation, among others, over southwestern South America. In recent decades, strengthening and expansion of the SPSH have been observed and attributed to the current global warming. These changes have led to an intensification of the southerly winds along the coast of northern to central Chile and a decrease in precipitation from central to southern Chile. Motivated by improving our understanding about the regional impacts of climate change in this part of the Southern Hemisphere, we analyzed SPSH changes during the two most extreme climate events of the last millennium, the Little Ice Age (LIA) and the Current Warm Period (CWP: 1970–2000), based on paleoclimate records and CMIP5/PMIP3 model simulations. In order to assess the level of agreement of general circulation models, we also compare them with ERA-Interim reanalysis data for the 1979–2009 period as a complementary analysis. Finally, with the aim of evaluating future SPSH behavior, we include 21st century projections under a Representative Concentration Pathway (RCP8.5) scenario in our analyses. Our results indicate that during the relative warm (cold) period, the SPSH expands (contracts). Together with this change, alongshore winds intensify (weaken) south (north) of ∼35∘ S; also, southern westerly winds become stronger (weaker) and shift southward (northward). Model results generally underestimate reanalysis data. These changes are in good agreement with paleoclimate records, which suggest that these variations could be related to tropical climate dynamics but also to extratropical phenomena. However, although models adequately represent most of the South American climate changes, they fail to represent the Intertropical Convergence Zone–Hadley cell system dynamics, emphasizing the importance of improving tropical system dynamics in simulations for a better understanding of its effects on South America. Climate model projections indicate that changes recently observed will continue during the next decades, highlighting the need to establish effective mitigation and adaptation strategies against their environmental and socioeconomic impacts.

2019 ◽  
Author(s):  
Valentina Flores-Aqueveque ◽  
Maisa Rojas ◽  
Catalina Aguirre ◽  
Paola A. Arias ◽  
Charles González

Abstract. The South Pacific Subtropical High (SPSH) is a predominant feature of South American climate. The variability of this high-pressure center induces changes in the intensity of coastal alongshore winds and precipitation, among others, over southwestern South America. In recent decades, a strengthening and expansion of the SPSH have been observed and attributed to the current global warming. These changes have led an intensification of the southerly winds along the coast of northern to central Chile, and a decrease in precipitation from central to southern Chile. Motivated by improving our understanding about the regional impacts of climate change in this part of the Southern Hemisphere, we analyze SPSH changes during the two most extreme climate events of the last millennium: the Little Ice Age (LIA) and the Current Warm Period (CWP: 1970–2000), based on paleoclimate records and CMIP5/PMIP3 model simulations. In order to assess the level of agreement of general circulation models, we also compare them with ERA-Interim reanalysis data for the 1979–2009 period as a complementary analysis. Finally, with the aim of evaluating future SPSH behaviour, we include 21th century projections under a RCP8.5 scenario in our analyses. Our results indicate that during the relative warm (cold) period, the SPSH expands (contracts). Together with this change, alongshore winds intensify (weaken) south (north) of ~ 35º S; also, Southern Westerly Winds become stronger (weaker) and shift southward (northward). Model results generally underestimate reanalysis data. These changes are in good agreement with paleoclimate records, which suggest that these variations could be related to tropical climate dynamics but also to extratropical phenomena. However, although models adequately represent most of the South American climate changes, they fail in representing the Intertropical Convergence Zone - Hadley Cell system dynamics. Climate model projections indicate that changes recently observed will continue during next decades, highlighting the need to establish effective mitigation and adaptation strategies against their environmental and socio-economic impacts.


2020 ◽  
Author(s):  
Karl J. F. Meier ◽  
Andrea Jaeschke ◽  
Julia Hoffmann ◽  
Barbara Hennrich ◽  
Oliver Friedrich ◽  
...  

<p>Rapid climatic reorganizations during the last Termination (i.e. Heinrich Stadials 0-1) had major impacts on the Atlantic Meridional Overturning Circulation (AMOC) strength and on global atmospheric circulation patterns. However, if and how this high-latitude forcing affected low-latitude climate variability is still poorly constrained. Here we present a high-resolution multi-proxy record from marine sediment core M125-3-35 recovered in the western tropical South Atlantic combining foraminiferal Mg/Ca, Ba/Ca ratios, stable oxygen isotope measurements and organic biomarker-based sea surface temperature (SST) proxies (TEX86 and UK’37). The near-shore core position of M125-3-35 off the Paraíba do Sul river mouth in southeastern Brazil and the means of foraminiferal Ba/Ca ratios, which depends on the quantity of continental freshwater input, enables us to investigate direct coupling of continental hydroclimate and oceanographic changes.</p><p>The data show a complex interplay of oceanic and atmospheric forcing dominating the tropical South American climate, which is mainly controlled by the strength and position of the Intertropical Convergence Zone (ITCZ) and South Atlantic Convergence Zone (SACZ). During times of weakest AMOC in Heinrich Stadial 1 (HS1) , a distinct SST peak in the tropical South Atlantic points to an enhanced Brazil Current and strong recirculation of heat within the southern hemisphere. Further, wet conditions prevailed during this time in tropical South America caused by a maximum southward shift of the ITCZ. This happened in coincidence with a temperature drop and weakening of the North Brazil Current (NBC) in the tropical North Atlantic (Bahr et al., 2018) as result of maximum AMOC slowdown. Therefore, for the first time, we reveal a clear seesaw-like pattern of the NBC and BC during times of abrupt AMOC variability.</p><p>While HS1 is generally characterized by a warm and wet anomaly in our record, Ba/Ca ratios and SST show a distinct centennial-scale alternation between warmer (colder) and wetter (drier) phases indicating a distinct climate instability during this climatic phase. A distinct offset exists between SST reconstructed using Mg/Ca, TEX86, and UK’37 which points to strong seasonal differences in the oceanographic settings and/or changes in the terrestrial input from the south American continent. These findings illustrate the strong sensitivity of hydroclimate variability in tropical South America to oceanic forcing as expected also during future climate change, in line with recent studies that showed a severe impact on modern South American climate by changes in (tropical) South Atlantic SSTs (Rodrigues et al., 2019, Utida et al., 2018).</p><p> </p><p>Bahr, A., Hoffmann, J., Schönfeld, J., Schmidt, M. W., Nürnberg, D., Batenburg, S. J., & Voigt, S. (2018). Low-latitude expressions of high-latitude forcing during Heinrich Stadial 1 and the Younger Dryas in northern South America. <em>Global and Planetary Change, 160</em>, 1-9.</p><p>Rodrigues, R. R., Taschetto, A. S., Gupta, A. S., & Foltz, G. R. (2019). Common cause for severe droughts in South America and marine heatwaves in the South Atlantic. <em>Nature Geoscience, 12</em>(8), 620-626.</p><p>UTIDA, Giselle, et al. Tropical South Atlantic influence on Northeastern Brazil precipitation and ITCZ displacement during the past 2300 years. <em>Scientific reports</em>, 2019, 9. Jg., Nr. 1, S. 1698.</p>


2015 ◽  
Vol 28 (12) ◽  
pp. 4841-4862 ◽  
Author(s):  
Xiaojuan Liu ◽  
David S. Battisti

Abstract The δ18O of calcite (δ18Oc) in speleothems from South America is fairly well correlated with austral summer [December–February (DJF)] insolation, indicating the role of orbitally paced changes in insolation in changing the climate of South America. Using an isotope-enabled atmospheric general circulation model (ECHAM4.6) coupled to a slab ocean model, the authors study how orbitally paced variations in insolation change climate and the isotopic composition of precipitation (δ18Op) of South America. Compared with times of high summertime insolation, times of low insolation feature (i) a decrease in precipitation inland of tropical South America as a result of an anomalous cooling of the South American continent and hence a weakening of the South American summer monsoon and (ii) an increase in precipitation in eastern Brazil that is associated with the intensification and southward movement of the Atlantic intertropical convergence zone, which is caused by the strengthening of African winter monsoon that is induced by the anomalous cooling of northern Africa. Finally, reduced DJF insolation over southern Africa causes cooling and the generation of a tropically trapped Rossby wave that intensifies and shifts the South Atlantic convergence zone northward. In times of low insolation, δ18Op increases in the northern Andes and decreases in northeastern Brazil, consistent with the pattern of δ18Oc changes seen in speleothems. Further analysis shows that the decrease in δ18Op in northeastern Brazil is due to change in the intensity of precipitation, while the increase in the northern Andes reflects a change in the seasonality of precipitation and in the isotopic composition of vapor that forms the condensates.


2014 ◽  
Vol 29 (3) ◽  
pp. 315-330
Author(s):  
Yanina García Skabar ◽  
Matilde Nicolini

During the warm season 2002-2003, the South American Low-Level Jet Experiment (SALLJEX) was carried out in southeastern South America. Taking advantage of the unique database collected in the region, a set of analyses is generated for the SALLJEX period assimilating all available data. The spatial and temporal resolution of this new set of analyses is higher than that of analyses available up to present for southeastern South America. The aim of this paper is to determine the impact of assimilating data into initial fields on mesoscale forecasts in the region, using the Brazilian Regional Atmospheric Modeling System (BRAMS) with particular emphasis on the South American Low-Level Jet (SALLJ) structure and on rainfall forecasts. For most variables, using analyses with data assimilated as initial fields has positive effects on short term forecast. Such effect is greater in wind variables, but not significant in forecasts longer than 24 hours. In particular, data assimilation does not improve forecasts of 24-hour accumulated rainfall, but it has slight positive effects on accumulated rainfall between 6 and 12 forecast hours. As the main focus is on the representation of the SALLJ, the effect of data assimilation in its forecast was explored. Results show that SALLJ is fairly predictable however assimilating additional observation data has small impact on the forecast of SALLJ timing and intensity. The strength of the SALLJ is underestimated independently of data assimilation. However, Root mean square error (RMSE) and BIAS values reveal the positive effect of data assimilation up to 18-hours forecasts with a greater impact near higher topography.


2003 ◽  
Vol 131 (8) ◽  
pp. 1566-1576 ◽  
Author(s):  
Andrew W. Robertson ◽  
Carlos R. Mechoso

Abstract The characteristics of subseasonal circulation variability over the South Pacific are examined using 10-day lowpass-filtered 700-hPa geopotential height NCEP–NCAR reanalysis data. The extent to which the variability in each season is characterized by recurrent geographically fixed circulation regimes and/or oscillatory behavior is determined. Two methods of analysis (a K-means cluster analysis and a cross-validated Gaussian mixture model) both indicate three to four geographically fixed circulation regimes in austral fall, winter, and (to some extent) spring. The spatial regime structures are found to be quite similar in each season; they resemble the so-called Pacific–South American (PSA) patterns discussed in previous studies and often referred to as PSA 1 and PSA 2. Oscillatory behavior is investigated using singular spectrum analysis. This identifies a predominantly stationary wave with a period of about 40 days and a spatial structure similar to PSA 1; it is most pronounced in winter and spring and exhibits a noticeable eastward drift as it decays. The power spectrum of variability is otherwise well approximated by a red spectrum, together with enhanced broader-band 15–30-day variability. The results presented herein indicate that low-frequency variability over the South Pacific is not dominated by a propagating wave whose quadrature phases are PSA 1 and PSA 2, as hitherto described. Rather, it is found that the variability is well described by the occurrence of three to four geographically fixed circulation regimes, with a (near) 40-day oscillation that is predominantly stationary in space. The potential subseasonal predictability implied by this duality is discussed. Only during austral spring is a strong correlation found between El Niño and the frequency of occurrence of the circulation regimes.


2016 ◽  
Author(s):  
Valerio Lembo ◽  
Isabella Bordi ◽  
Antonio Speranza

Abstract. Seasonal variability of surface air temperature and baroclinicity from the ECMWF ERA-Interim (ERAI) reanalysis and six coupled atmosphere-ocean general circulation models (AOGCMs) participating in the Coupled Model Intercomparison Project phase 3 and 5 (CMIP3 and CMIP5) are examined. In particular, the annual and semiannual cycles of hemispherically averaged fields are studied using spectral analysis. The aim is to assess the ability of coupled general circulation models to properly reproduce the observed amplitude and phase of these cycles, and investigate the relationship between surface temperature and baroclinicity (coherency and relative phase) in such frequency bands. The overall results of power spectra agree in displaying a statistically significant peak at the annual frequency in the zonally averaged fields of both hemispheres. The semiannual peak, instead, shows less power and in the NH seems to have a more regional character, as is observed in the North Pacific Ocean region. Results of bivariate analysis for such a region and Southern Hemisphere midlatitudes show some discrepancies between ERAI and model data, as well as among models, especially for the semiannual frequency. Specifically: (i) the coherency at the annual and semiannual frequency observed in the reanalysis data is well represented by models in both hemispheres; (ii) at the annual frequency, estimates of the relative phase between surface temperature and baroclinicity are bounded between about ±15° around an average value of 220° (i.e., approximately 1 month phase shift), while at the semiannual frequency model phases show a wider dispersion in both hemispheres with larger errors in the estimates, denoting increased uncertainty and some disagreement among models. The most recent CMIP climate models (CMIP5) show several improvements when compared with CMIP3 but a degree of discrepancy still persists though masked by the large errors characterizing the semiannual frequency. These findings contribute to better characterize the cyclic response of current global atmosphere-ocean models to the external (solar) forcing that is of interest for seasonal forecasts.


Water ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1594 ◽  
Author(s):  
Beatriz Garcia ◽  
Renata Libonati ◽  
Ana Nunes

The Amazon basin has experienced severe drought events for centuries, mainly associated with climate variability connected to tropical North Atlantic and Pacific sea surface temperature anomalous warming. Recently, these events are becoming more frequent, more intense and widespread. Because of the Amazon droughts environmental and socioeconomic impacts, there is an increased demand for understanding the characteristics of such extreme events in the region. In that regard, regional models instead of the general circulation models provide a promising strategy to generate more detailed climate information of extreme events, seeking better representation of physical processes. Due to uneven spatial distribution and gaps found in station data in tropical South America, and the need of more refined climate assessment in those regions, satellite-enhanced regional downscaling for applied studies (SRDAS) is used in the reconstruction of South American hydroclimate, with hourly to monthly outputs from January 1998. Accordingly, this research focuses on the analyses of recent extreme drought events in the years of 2005 and 2010 in the Amazon Basin, using the SRDAS monthly means of near-surface temperature and relative humidity, precipitation and vertically integrated soil moisture fields. Results from this analysis corroborate spatial and temporal patterns found in previous studies on extreme drought events in the region, displaying the distinctive features of the 2005 and 2010 drought events.


2021 ◽  
Vol 14 (3) ◽  
pp. 1268
Author(s):  
Maicon Moraes Santiago ◽  
Gabriel Borges dos Santos ◽  
Iulli Pitone Cardoso ◽  
André Becker Nunes

Particles of soot from forest fires are transported by the wind, reaching distant locations and being deposited on the soil through precipitation, which clears the atmosphere, taking suspended particulate matter into its drops. The general circulation over South America indicates the possibility of soot from forest fires in the Amazon and Pantanal to be transported to southern Brazil. The event called “black rain” was observed in the period from 11 to 13 September 2020 at São Francisco de Assis City, in Rio Grande do Sul State (RS), and so this work aims to analyze if there were any anomalies of the flow that favored the occurrence of this event, given that there was a large number of fires in this period. Through ERA5 reanalysis data and GOES-16 satellite images, it was observed that on the three days under study low-level flow to the south of Brazil was more intense than normal, with the Low Level Jet occurrences, and on days 12 and 13 such flow to the south was also observed at 500 hPa. The precipitation was due to the instability of an extended trough from the Northwestern Argentinean Low. Thus, it is believed that there was a contribution from circulation at low and mid levels in the occurrence of black rain over RS.


2019 ◽  
Author(s):  
Donald A. Slater ◽  
Denis Felikson ◽  
Fiamma Straneo ◽  
Heiko Goelzer ◽  
Christopher M. Little ◽  
...  

Abstract. Changes in the ocean are expected to be an important determinant of the Greenland Ice Sheet's future sea level contribution. Yet representing these changes in continental-scale ice sheet models remains challenging due to the small scale of the key physics, and limitations in processing understanding. Here we present the ocean forcing strategy for Greenland Ice Sheet models taking part in the Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6), the primary community effort to provide 21st century sea level projections for the Intergovernmental Panel on Climate Change 6th Assessment Report. Beginning from global atmosphere-ocean general circulation models, we describe two complementary approaches to provide ocean boundary conditions for Greenland Ice Sheet models, termed the retreat and submarine melt implementations. The retreat implementation parameterizes glacier retreat as a function of projected submarine melting, is designed to be implementable by all ice sheet models, and results in retreat of around 1 and 15 km by 2100 in RCP2.6 and 8.5 scenarios respectively. The submarine melt implementation provides estimated submarine melting only, leaving the ice sheet model to solve for the resulting calving and glacier retreat, and suggests submarine melt rates will change little under RCP2.6 but will approximately triple by 2100 under RCP8.5. Both implementations have necessarily made use of simplifying assumptions and poorly-constrained parameterisations and as such, further research on submarine melting, calving and fjord-shelf exchange should remain a priority. Nevertheless, the presented framework will allow an ensemble of Greenland Ice Sheet models to be systematically and consistently forced by the ocean for the first time, and should therefore result in a significant improvement in projections of the Greenland ice sheet's contribution to future sea level change.


Sign in / Sign up

Export Citation Format

Share Document