scholarly journals Evaluating the large-scale hydrological cycle response within the Pliocene Model Intercomparison Project Phase 2 (PlioMIP2) ensemble

2021 ◽  
Vol 17 (6) ◽  
pp. 2537-2558
Author(s):  
Zixuan Han ◽  
Qiong Zhang ◽  
Qiang Li ◽  
Ran Feng ◽  
Alan M. Haywood ◽  
...  

Abstract. The mid-Pliocene (∼3 Ma) is one of the most recent warm periods with high CO2 concentrations in the atmosphere and resulting high temperatures, and it is often cited as an analog for near-term future climate change. Here, we apply a moisture budget analysis to investigate the response of the large-scale hydrological cycle at low latitudes within a 13-model ensemble from the Pliocene Model Intercomparison Project Phase 2 (PlioMIP2). The results show that increased atmospheric moisture content within the mid-Pliocene ensemble (due to the thermodynamic effect) results in wetter conditions over the deep tropics, i.e., the Pacific intertropical convergence zone (ITCZ) and the Maritime Continent, and drier conditions over the subtropics. Note that the dynamic effect plays a more important role than the thermodynamic effect in regional precipitation minus evaporation (PmE) changes (i.e., northward ITCZ shift and wetter northern Indian Ocean). The thermodynamic effect is offset to some extent by a dynamic effect involving a northward shift of the Hadley circulation that dries the deep tropics and moistens the subtropics in the Northern Hemisphere (i.e., the subtropical Pacific). From the perspective of Earth's energy budget, the enhanced southward cross-equatorial atmospheric transport (0.22 PW), induced by the hemispheric asymmetries of the atmospheric energy, favors an approximately 1∘ northward shift of the ITCZ. The shift of the ITCZ reorganizes atmospheric circulation, favoring a northward shift of the Hadley circulation. In addition, the Walker circulation consistently shifts westward within PlioMIP2 models, leading to wetter conditions over the northern Indian Ocean. The PlioMIP2 ensemble highlights that an imbalance of interhemispheric atmospheric energy during the mid-Pliocene could have led to changes in the dynamic effect, offsetting the thermodynamic effect and, hence, altering mid-Pliocene hydroclimate.

2021 ◽  
Author(s):  
Zixuan Han ◽  
Qiong Zhang ◽  
Qiang Li ◽  
Ran Feng ◽  
Alan M. Haywood ◽  
...  

Abstract. The mid-Pliocene (~ 3 million years ago) is one of the most recent warm periods with high CO2 concentrations in the atmosphere and resulting high temperatures and is often cited as an analog for near-term future climate change. Here, we apply a moisture budget analysis to investigate the response of the large-scale hydrological cycle at low latitudes within a 13-model ensemble from the Pliocene Model Intercomparison Project Phase 2 (PlioMIP2). The results show that increased atmospheric moisture content within the mid-Pliocene ensemble (the thermodynamic effect) results in wetter conditions over the deep tropics, i.e., the Pacific intertropical convergence zone (ITCZ) and the Maritime Continent, and drier conditions over the subtropics. The thermodynamic effect is to some extent offset by a dynamic effect involving a northward shift of the Hadley circulation that dries the deep tropics and moistens the subtropics in the Northern Hemisphere (i.e., the subtropical Pacific). From the perspective of Earth’s energy budget, the enhanced southward cross-equatorial atmospheric transport (0.22 PW), induced by the hemispheric asymmetries of the atmospheric energy, favors an approximately 1° northward shift of the ITCZ. The shift of the ITCZ reorganizes atmospheric circulation, favoring a northward shift of the Hadley circulation. In addition, the Walker circulation consistently shifts westward within PlioMIP2 models, leading to wetter conditions over the northern Indian Ocean. The PlioMIP2 ensemble highlights that an imbalance of interhemispheric atmospheric energy during the mid-Pliocene could have led to changes in the dynamic effect, offsetting the thermodynamic effect and hence altering mid-Pliocene hydroclimate cycling.


2020 ◽  
Author(s):  
Alan M. Haywood ◽  
Julia C. Tindall ◽  
Harry J. Dowsett ◽  
Aisling M. Dolan ◽  
Kevin M. Foley ◽  
...  

Abstract. The Pliocene epoch has great potential to improve our understanding of the long-term climatic and environmental consequences of an atmospheric CO2 concentration near ~ 400 parts per million by volume. Here we present the large-scale features of Pliocene climate as simulated by a new ensemble of climate models of varying complexity and spatial resolution and based on new reconstructions of boundary conditions (the Pliocene Model Intercomparison Project Phase 2; PlioMIP2). As a global annual average, modelled surface air temperatures increase by between 1.4 and 4.7 °C relative to pre-industrial with a multi-model mean value of 2.8 °C. Annual mean total precipitation rates increase by 6 % (range: 2 %–13 %). On average, surface air temperature (SAT) increases are 1.3 °C greater over the land than over the oceans, and there is a clear pattern of polar amplification with warming polewards of 60° N and 60° S exceeding the global mean warming by a factor of 2.4. In the Atlantic and Pacific Oceans, meridional temperature gradients are reduced, while tropical zonal gradients remain largely unchanged. Although there are some modelling constraints, there is a statistically significant relationship between a model's climate response associated with a doubling in CO2 (Equilibrium Climate Sensitivity; ECS) and its simulated Pliocene surface temperature response. The mean ensemble earth system response to doubling of CO2 (including ice sheet feedbacks) is approximately 50 % greater than ECS, consistent with results from the PlioMIP1 ensemble. Proxy-derived estimates of Pliocene sea-surface temperatures are used to assess model estimates of ECS and indicate a range in ECS from 2.5 to 4.3 °C. This result is in general accord with the range in ECS presented by previous IPCC Assessment Reports.


2018 ◽  
Author(s):  
Liren Wei ◽  
Duoying Ji ◽  
Chiyuan Miao ◽  
John C. Moore

Abstract. Flood risk is projected to increase under projections of future warming climates due to an enhanced hydrological cycle. Solar geoengineering is known to reduce precipitation and slowdown the hydrological cycle, and may be therefore be expected to offset increased flood risk. We examine this hypothesis using streamflow and river discharge responses to the representative concentration pathway RCP4.5 and Geoengineering Model Intercomparison Project (GeoMIP) G4 experiments. We also calculate changes in 30, 50, 100-year flood return periods relative to the historical (1960–1999) period under the RCP4.5 and G4 scenarios. Similar spatial patterns are produced for each return period, although those under G4 are closer to historical values than under RCP4.5. Under G4 generally lower streamflows are produced on the western sides of Eurasia and North America, with higher flows on their eastern sides. In the southern hemisphere northern parts of the land masses have lower streamflow under G4, and southern parts increases relative to RCP4.5. So in general solar geoengineering does appear to reduce flood risk in most regions, but the relative effects are largely determined by this large scale geographic pattern. Both streamflow and return period show increased drying of the Amazon under both RCP4.5 and G4 scenarios, with more drying under G4.


2018 ◽  
Vol 18 (21) ◽  
pp. 16033-16050 ◽  
Author(s):  
Liren Wei ◽  
Duoying Ji ◽  
Chiyuan Miao ◽  
Helene Muri ◽  
John C. Moore

Abstract. Flood risk is projected to increase under future warming climates due to an enhanced hydrological cycle. Solar geoengineering is known to reduce precipitation and slow down the hydrological cycle and may therefore be expected to offset increased flood risk. We examine this hypothesis using streamflow and river discharge responses to Representative Concentration Pathway 4.5 (RCP4.5) and the Geoengineering Model Intercomparison Project (GeoMIP) G4 scenarios. Compared with RCP4.5, streamflow on the western sides of Eurasia and North America is increased under G4, while the eastern sides see a decrease. In the Southern Hemisphere, the northern parts of landmasses have lower streamflow under G4, and streamflow of southern parts increases relative to RCP4.5. We furthermore calculate changes in 30-, 50-, and 100-year flood return periods relative to the historical (1960–1999) period under the RCP4.5 and G4 scenarios. Similar spatial patterns are produced for each return period, although those under G4 are closer to historical values than under RCP4.5. Hence, in general, solar geoengineering does appear to reduce flood risk in most regions, but the overall effects are largely determined by this large-scale geographic pattern. Although G4 stratospheric aerosol geoengineering ameliorates the Amazon drying under RCP4.5, with a weak increase in soil moisture, the decreased runoff and streamflow leads to an increased flood return period under G4 compared with RCP4.5.


2020 ◽  
Vol 16 (6) ◽  
pp. 2095-2123 ◽  
Author(s):  
Alan M. Haywood ◽  
Julia C. Tindall ◽  
Harry J. Dowsett ◽  
Aisling M. Dolan ◽  
Kevin M. Foley ◽  
...  

Abstract. The Pliocene epoch has great potential to improve our understanding of the long-term climatic and environmental consequences of an atmospheric CO2 concentration near ∼400 parts per million by volume. Here we present the large-scale features of Pliocene climate as simulated by a new ensemble of climate models of varying complexity and spatial resolution based on new reconstructions of boundary conditions (the Pliocene Model Intercomparison Project Phase 2; PlioMIP2). As a global annual average, modelled surface air temperatures increase by between 1.7 and 5.2 ∘C relative to the pre-industrial era with a multi-model mean value of 3.2 ∘C. Annual mean total precipitation rates increase by 7 % (range: 2 %–13 %). On average, surface air temperature (SAT) increases by 4.3 ∘C over land and 2.8 ∘C over the oceans. There is a clear pattern of polar amplification with warming polewards of 60∘ N and 60∘ S exceeding the global mean warming by a factor of 2.3. In the Atlantic and Pacific oceans, meridional temperature gradients are reduced, while tropical zonal gradients remain largely unchanged. There is a statistically significant relationship between a model's climate response associated with a doubling in CO2 (equilibrium climate sensitivity; ECS) and its simulated Pliocene surface temperature response. The mean ensemble Earth system response to a doubling of CO2 (including ice sheet feedbacks) is 67 % greater than ECS; this is larger than the increase of 47 % obtained from the PlioMIP1 ensemble. Proxy-derived estimates of Pliocene sea surface temperatures are used to assess model estimates of ECS and give an ECS range of 2.6–4.8 ∘C. This result is in general accord with the ECS range presented by previous Intergovernmental Panel on Climate Change (IPCC) Assessment Reports.


2020 ◽  
Vol 37 (10) ◽  
pp. 1067-1080
Author(s):  
Yiwen Li ◽  
Hailong Liu ◽  
Mengrong Ding ◽  
Pengfei Lin ◽  
Zipeng Yu ◽  
...  

Abstract A 61-year (1958–2018) global eddy-resolving dataset for phase 2 of the Ocean Model Intercomparison Project has been produced by the version 3 of Chinese Academy of Science, the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics/Institute of Atmospheric Physics (LASG/IAP) Climate system Ocean Model (CAS-LICOM3). The monthly and a part of the surface daily data in this study can be accessed on the Earth System Grid Federation (ESGF) node. Besides the details of the model and experiments, the evolutions and spatial patterns of large-scale and mesoscale features are also presented. The mesoscale features are reproduced well in the high-resolution simulation, as the mesoscale activities can contribute up to 50% of the total SST variability in eddy-rich regions. Also, the large-scale circulations are remarkably improved compared with the low-resolution simulation, such as the climatological annual mean SST (the RMSE is reduced from 0.59°C to 0.47°C, globally) and the evolution of Atlantic Meridional Overturning Circulation. The preliminary evaluation also indicates that there are systematic biases in the salinity, the separation location of the western boundary currents, and the magnitude of eddy kinetic energy. All these biases are worthy of further investigation.


2020 ◽  
Vol 16 (5) ◽  
pp. 1847-1872 ◽  
Author(s):  
Chris M. Brierley ◽  
Anni Zhao ◽  
Sandy P. Harrison ◽  
Pascale Braconnot ◽  
Charles J. R. Williams ◽  
...  

Abstract. The mid-Holocene (6000 years ago) is a standard time period for the evaluation of the simulated response of global climate models using palaeoclimate reconstructions. The latest mid-Holocene simulations are a palaeoclimate entry card for the Palaeoclimate Model Intercomparison Project (PMIP4) component of the current phase of the Coupled Model Intercomparison Project (CMIP6) – hereafter referred to as PMIP4-CMIP6. Here we provide an initial analysis and evaluation of the results of the experiment for the mid-Holocene. We show that state-of-the-art models produce climate changes that are broadly consistent with theory and observations, including increased summer warming of the Northern Hemisphere and associated shifts in tropical rainfall. Many features of the PMIP4-CMIP6 simulations were present in the previous generation (PMIP3-CMIP5) of simulations. The PMIP4-CMIP6 ensemble for the mid-Holocene has a global mean temperature change of −0.3 K, which is −0.2 K cooler than the PMIP3-CMIP5 simulations predominantly as a result of the prescription of realistic greenhouse gas concentrations in PMIP4-CMIP6. Biases in the magnitude and the sign of regional responses identified in PMIP3-CMIP5, such as the amplification of the northern African monsoon, precipitation changes over Europe, and simulated aridity in mid-Eurasia, are still present in the PMIP4-CMIP6 simulations. Despite these issues, PMIP4-CMIP6 and the mid-Holocene provide an opportunity both for quantitative evaluation and derivation of emergent constraints on the hydrological cycle, feedback strength, and potentially climate sensitivity.


2020 ◽  
Author(s):  
Alan M. Haywood ◽  
Julia C. Tindall ◽  
Harry J. Dowsett ◽  
Aisling M. Dolan ◽  
Kevin M. Foley ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document