scholarly journals A comparison of two astronomical tuning approaches for the Oligocene-Miocene Transition from Pacific Ocean Site U1334 and implications for the carbon cycle

2017 ◽  
Author(s):  
Helen M. Beddow ◽  
Diederik Liebrand ◽  
Douglas S. Wilson ◽  
Frits J. Hilgen ◽  
Appy Sluijs ◽  
...  

Abstract. Astronomical tuning of sediment sequences requires both unambiguous cycle-pattern recognition in climate proxy records and astronomical solutions, and independent information about the phase relationship between these two. Here we present two astronomically tuned age models for the Oligocene-Miocene Transition (OMT) from Integrated Ocean Drilling Program Site U1334 (equatorial Pacific Ocean) to assess the effect tuning approaches have on astronomically calibrated ages and the geologic time scale. These age models are based on different phase-assumptions between climate proxy records and eccentricity: the first age model is based on an inverse and in-phase assumption of CaCO3 weight (wt %) to Earth's orbital eccentricity, the second age model is based on an inverse and in-phase assumption of benthic foraminifer stable carbon isotope ratios (δ13C) to eccentricity. The phase-assumptions that underpin these age models represent two end-members on the range of possible tuning options. To independently test which tuned age model and tuning assumptions are correct, we assign their ages to magnetostratigraphic reversals identified in anomaly profiles. Subsequently we compute tectonic plate-pair spreading rates based on the tuned ages. These alternative spreading rate histories indicate that the CaCO3 tuned age model is most consistent with a conservative assumption of constant spreading rates. The CaCO3 tuned age model thus provides robust ages and durations for polarity chrons C6Bn.1n–C6Cn.1r, which are not based on astronomical tuning in the latest iteration of the Geologic Time Scale. Furthermore, it provides independent evidence that the relatively large (several 10,000 years) time lags documented in the benthic foraminiferal isotope records relative to orbital eccentricity, constitute a real feature of the Oligocene-Miocene climate system and carbon cycle. The age constraints from Site U1334 thus provide independent evidence that the delayed responses of the Oligocene-Miocene climate-cryosphere system and carbon cycle resulted from increased nonlinear feedbacks to astronomical forcing.

2018 ◽  
Vol 14 (3) ◽  
pp. 255-270 ◽  
Author(s):  
Helen M. Beddow ◽  
Diederik Liebrand ◽  
Douglas S. Wilson ◽  
Frits J. Hilgen ◽  
Appy Sluijs ◽  
...  

Abstract. Astronomical tuning of sediment sequences requires both unambiguous cycle pattern recognition in climate proxy records and astronomical solutions, as well as independent information about the phase relationship between these two. Here we present two different astronomically tuned age models for the Oligocene–Miocene transition (OMT) from Integrated Ocean Drilling Program Site U1334 (equatorial Pacific Ocean) to assess the effect tuning has on astronomically calibrated ages and the geologic timescale. These alternative age models (roughly from  ∼ 22 to  ∼ 24 Ma) are based on different tunings between proxy records and eccentricity: the first age model is based on an aligning CaCO3 weight (wt%) to Earth's orbital eccentricity, and the second age model is based on a direct age calibration of benthic foraminiferal stable carbon isotope ratios (δ13C) to eccentricity. To independently test which tuned age model and associated tuning assumptions are in best agreement with independent ages based on tectonic plate-pair spreading rates, we assign the tuned ages to magnetostratigraphic reversals identified in deep-marine magnetic anomaly profiles. Subsequently, we compute tectonic plate-pair spreading rates based on the tuned ages. The resultant alternative spreading-rate histories indicate that the CaCO3 tuned age model is most consistent with a conservative assumption of constant, or linearly changing, spreading rates. The CaCO3 tuned age model thus provides robust ages and durations for polarity chrons C6Bn.1n–C7n.1r, which are not based on astronomical tuning in the latest iteration of the geologic timescale. Furthermore, it provides independent evidence that the relatively large (several 10 000 years) time lags documented in the benthic foraminiferal isotope records relative to orbital eccentricity constitute a real feature of the Oligocene–Miocene climate system and carbon cycle. The age constraints from Site U1334 thus indicate that the delayed responses of the Oligocene–Miocene climate–cryosphere system and (marine) carbon cycle resulted from highly non-linear feedbacks to astronomical forcing.


Geology ◽  
2021 ◽  
Author(s):  
Yang Zhang ◽  
James G. Ogg ◽  
Daniel Minguez ◽  
Mark W. Hounslow ◽  
Snorre Olaussen ◽  
...  

The age of the beginning of magnetic polarity Chron M0r, a proposed marker for the base of the Aptian Stage, is disputed due to a divergence of published radioisotopic dates and ambiguities in stratigraphic correlation of sections. Our magnetostratigraphy of core DH1 from Svalbard, Norway, calibrates a bentonite bed, dated by U-Pb methods to 123.1 ± 0.3 Ma, to the uppermost part of magnetozone M1r, which is ~1.9 m.y. before the beginning of Chron M0r. This is the first direct calibration of any high-precision radioisotopic date to a polarity chron of the M sequence. The interpolated age of 121.2 ± 0.4 Ma for the beginning of Chron M0r is younger by ~5 m.y. than its estimated age used in the Geologic Time Scale 2012, which had been extrapolated from radioisotopic dates on oceanic basalts and from Aptian cyclostratigraphy. The adjusted age model implies a commensurate faster average global oceanic spreading rate of ~12% during the Aptian–Santonian interval. Future radioisotopic dating and high-resolution cyclostratigraphy are needed to investigate where to expand the mid-Jurassic to earliest Cretaceous interval by the required ~4 m.y.


1991 ◽  
Vol 99 (5) ◽  
pp. 786-786
Author(s):  
John J. Flynn

2007 ◽  
Vol 80 (1-2) ◽  
pp. 111-136 ◽  
Author(s):  
T STEVENS ◽  
D THOMAS ◽  
S ARMITAGE ◽  
H LUNN ◽  
H LU

2021 ◽  
pp. jgs2020-156
Author(s):  
Andy Gale

The effects of structural inversion, generated by the Pyrenean Orogeny on the southerly bounding faults of the Hampshire Basin (Needles and Sandown Faults) on Eocene sedimentation in the adjacent regions were studied in outcrops by sedimentary logging, dip records and the identification of lithoclasts reworked from the crests of anticlines generated during inversion. The duration and precise age of hiatuses associated with inversion was identified using bio- and magnetostratigraphy, in comparison with the Geologic Time Scale 2020. The succession on the northern limb of the Sandown Anticline (Whitecliff Bay) includes five hiatuses of varying durations which together formed a progressive unconformity developed during the Lutetian to Priabonian interval (35-47Ma). Syn-inversion deposits thicken southwards towards the southern margin of the Hampshire Basin and are erosionally truncated by unconformities. The effects of each pulse of inversion are recorded by successively shallower dips and the age and nature of clasts reworked from the crest of the Sandown Anticline. Most individual hiatuses are interpreted as minor unconformities developed subsequent to inversion, rather than eustatically-generated sequence boundaries:transgressive surfaces. In contrast, the succession north of the Needles Fault (Alum Bay) does not contain hiatuses of magnitude or internal unconformities. In the north-west of the island, subsidiary anticlinal and synclinal structures developed in response to Eocene inversion events by the reactivation of minor basement faults. The new dates of the Eocene inversion events correspond closely with radiometric ages derived from fracture vein-fill calcites in Dorset, to the west (36-48Ma).


2016 ◽  
Vol 12 (5) ◽  
pp. 1181-1198 ◽  
Author(s):  
Daniel J. Lunt ◽  
Alex Farnsworth ◽  
Claire Loptson ◽  
Gavin L. Foster ◽  
Paul Markwick ◽  
...  

Abstract. During the period from approximately 150 to 35 million years ago, the Cretaceous–Paleocene–Eocene (CPE), the Earth was in a “greenhouse” state with little or no ice at either pole. It was also a period of considerable global change, from the warmest periods of the mid-Cretaceous, to the threshold of icehouse conditions at the end of the Eocene. However, the relative contribution of palaeogeographic change, solar change, and carbon cycle change to these climatic variations is unknown. Here, making use of recent advances in computing power, and a set of unique palaeogeographic maps, we carry out an ensemble of 19 General Circulation Model simulations covering this period, one simulation per stratigraphic stage. By maintaining atmospheric CO2 concentration constant across the simulations, we are able to identify the contribution from palaeogeographic and solar forcing to global change across the CPE, and explore the underlying mechanisms. We find that global mean surface temperature is remarkably constant across the simulations, resulting from a cancellation of opposing trends from solar and palaeogeographic change. However, there are significant modelled variations on a regional scale. The stratigraphic stage–stage transitions which exhibit greatest climatic change are associated with transitions in the mode of ocean circulation, themselves often associated with changes in ocean gateways, and amplified by feedbacks related to emissivity and planetary albedo. We also find some control on global mean temperature from continental area and global mean orography. Our results have important implications for the interpretation of single-site palaeo proxy records. In particular, our results allow the non-CO2 (i.e. palaeogeographic and solar constant) components of proxy records to be removed, leaving a more global component associated with carbon cycle change. This “adjustment factor” is used to adjust sea surface temperatures, as the deep ocean is not fully equilibrated in the model. The adjustment factor is illustrated for seven key sites in the CPE, and applied to proxy data from Falkland Plateau, and we provide data so that similar adjustments can be made to any site and for any time period within the CPE. Ultimately, this will enable isolation of the CO2-forced climate signal to be extracted from multiple proxy records from around the globe, allowing an evaluation of the regional signals and extent of polar amplification in response to CO2 changes during the CPE. Finally, regions where the adjustment factor is constant throughout the CPE could indicate places where future proxies could be targeted in order to reconstruct the purest CO2-induced temperature change, where the complicating contributions of other processes are minimised. Therefore, combined with other considerations, this work could provide useful information for supporting targets for drilling localities and outcrop studies.


2021 ◽  
Author(s):  
Zijian Zhang ◽  
Zhongshi Zhang ◽  
Zhengtang Guo

<p>The early Eocene is a warm period with a very high atmosphere CO<sub>2</sub> level in the Cenozoic. It  provides a good reference for our future climate under the Representative Concentration Pathway 8.5 scenario. Therefore, the early Eocene climate has received many attentions in  modeling studies, for example, the Deep-Time Model Intercomparison Project (DeepMIP). However, the early Eocene palaeogeographic conditions show remarkable contrasts to the present conditions. Meanwhile, there are a few different reconstructions for the early Eocene palaeogeography, which may cause further model spreads in simulating the early Eocene warm climate. Here, we present a series of experiments carried out with the NorESM1-F, under the framework of DeepMIP. In these experiments, we consider three different palaeogeographic reconstructions for the early Eocene. We also compare our simulations with climate proxy records, to validate which palaeogeographic reconstructions can reproduce simulations that agree better with the climate proxy records.</p>


Sign in / Sign up

Export Citation Format

Share Document