scholarly journals Reduced Carbon Cycle Resilience across the Palaeocene-Eocene Thermal Maximum

2018 ◽  
Author(s):  
David I. Armstrong McKay ◽  
Timothy M. Lenton

Abstract. Several past episodes of rapid carbon cycle and climate change are hypothesised to be the result of the Earth system reaching a tipping point beyond which an abrupt transition to a new state occurs. At the Palaeocene-Eocene Thermal Maximum (PETM) ~ 56 Ma, and at subsequent hyperthermal events, hypothesised tipping points involve the abrupt transfer of carbon from surface reservoirs to the atmosphere. Theory suggests that tipping points in complex dynamical systems should be preceded by critical slowing down of their dynamics, including increasing temporal autocorrelation and variability. However, reliably detecting these indicators in palaeorecords is challenging, with issues of data quality, false positives, and parameter selection potentially affecting reliability. Here we show that in a sufficiently long, high-resolution palaeorecord there is consistent evidence of destabilisation of the carbon cycle in the ~ 1.5 My prior to the PETM, elevated carbon cycle and climate instability following both the PETM and Eocene Thermal Maximum 2 (ETM2), and differing carbon cycle dynamics preceding the PETM and ETM2. Our results indicate a loss of resilience (weakened stabilising negative feedbacks and greater sensitivity to small shocks) in the carbon cycle before the PETM, and in the carbon-climate system following it. This pre-PETM carbon cycle destabilisation may reflect gradual forcing by the contemporaneous North Atlantic Volcanic Province eruptions. Our results are consistent with but cannot prove the existence of a tipping point for abrupt carbon release, e.g. from methane hydrate or terrestrial organic carbon reservoirs, whereas we find no support for a tipping point in deep ocean temperature.

2018 ◽  
Vol 14 (10) ◽  
pp. 1515-1527 ◽  
Author(s):  
David I. Armstrong McKay ◽  
Timothy M. Lenton

Abstract. Several past episodes of rapid carbon cycle and climate change are hypothesised to be the result of the Earth system reaching a tipping point beyond which an abrupt transition to a new state occurs. At the Palaeocene–Eocene Thermal Maximum (PETM) at ∼56 Ma and at subsequent hyperthermal events, hypothesised tipping points involve the abrupt transfer of carbon from surface reservoirs to the atmosphere. Theory suggests that tipping points in complex dynamical systems should be preceded by critical slowing down of their dynamics, including increasing temporal autocorrelation and variability. However, reliably detecting these indicators in palaeorecords is challenging, with issues of data quality, false positives, and parameter selection potentially affecting reliability. Here we show that in a sufficiently long, high-resolution palaeorecord there is consistent evidence of destabilisation of the carbon cycle in the ∼1.5 Myr prior to the PETM, elevated carbon cycle and climate instability following both the PETM and Eocene Thermal Maximum 2 (ETM2), and different drivers of carbon cycle dynamics preceding the PETM and ETM2 events. Our results indicate a loss of “resilience” (weakened stabilising negative feedbacks and greater sensitivity to small shocks) in the carbon cycle before the PETM and in the carbon–climate system following it. This pre-PETM carbon cycle destabilisation may reflect gradual forcing by the contemporaneous North Atlantic Volcanic Province eruptions, with volcanism-driven warming potentially weakening the organic carbon burial feedback. Our results are consistent with but cannot prove the existence of a tipping point for abrupt carbon release, e.g. from methane hydrate or terrestrial organic carbon reservoirs, whereas we find no support for a tipping point in deep ocean temperature.


2012 ◽  
Vol 9 (11) ◽  
pp. 4679-4688 ◽  
Author(s):  
S. J. Gibbs ◽  
P. R. Bown ◽  
B. H. Murphy ◽  
A. Sluijs ◽  
K. M. Edgar ◽  
...  

Abstract. Late Paleocene and early Eocene hyperthermals are transient warming events associated with massive perturbations of the global carbon cycle, and are considered partial analogues for current anthropogenic climate change. Because the magnitude of carbon release varied between the events, they are natural experiments ideal for exploring the relationship between carbon cycle perturbations, climate change and biotic response. Here we quantify marine biotic variability through three million years of the early Eocene that include five hyperthermals, utilizing a method that allows us to integrate the records of different plankton groups through scenarios ranging from background to major extinction events. Our long time-series calcareous nannoplankton record indicates a scaling of biotic disruption to climate change associated with the amount of carbon released during the various hyperthermals. Critically, only the three largest hyperthermals, the Paleocene–Eocene Thermal Maximum (PETM), Eocene Thermal Maximum 2 (ETM2) and the I1 event, show above-background variance, suggesting that the magnitude of carbon input and associated climate change needs to surpass a threshold value to cause significant biotic disruption.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sev Kender ◽  
Kara Bogus ◽  
Gunver K. Pedersen ◽  
Karen Dybkjær ◽  
Tamsin A. Mather ◽  
...  

AbstractThe Paleocene–Eocene Thermal Maximum (PETM) was a period of geologically-rapid carbon release and global warming ~56 million years ago. Although modelling, outcrop and proxy records suggest volcanic carbon release occurred, it has not yet been possible to identify the PETM trigger, or if multiple reservoirs of carbon were involved. Here we report elevated levels of mercury relative to organic carbon—a proxy for volcanism—directly preceding and within the early PETM from two North Sea sedimentary cores, signifying pulsed volcanism from the North Atlantic Igneous Province likely provided the trigger and subsequently sustained elevated CO2. However, the PETM onset coincides with a mercury low, suggesting at least one other carbon reservoir released significant greenhouse gases in response to initial warming. Our results support the existence of ‘tipping points’ in the Earth system, which can trigger release of additional carbon reservoirs and drive Earth’s climate into a hotter state.


2020 ◽  
Author(s):  
Maxime Tremblin ◽  
Hassan Khozyem ◽  
Jorge E. Spangenberg ◽  
Charlotte Fillon ◽  
Eric Lasseur ◽  
...  

<p>The Palaeogene represents the last “greenhouse” period characterized by high atmospheric CO<sub>2</sub> concentrations and warm surface temperatures. This long-term climatic state was punctuated by several transient hyperthermal events. These events are recorded primarily by prominent negative carbon isotope excursions (NCIE) in both carbonates and organic matter of sedimentary successions. The largest hyperthermal of the Palaeogene, the Palaeocene-Eocene Thermal Maximum (PETM), is associated with a 5-8° rise in global temperature, ocean acidification and a global biotic perturbation. The PETM is thus often seen as a geological analogue for future greenhouse-gas-driven global warming. The source of the <sup>13</sup>C-depleted carbon for the NCIE and whether it was released in one or numerous events however remains controversial. Numerous carbon sources have been suggested, either in concert or individually to explain the onset and the duration of the NCIE. These include magmatic as well as thermogenic release of CO<sub>2</sub> associated with large scale magmatism. Over the last decade, mercury (Hg) found in marine and continental sedimentary succession has emerged as a potential proxy of past volcanic emissions, allowing to trace the relationship between the emplacement of Large Igneous Provinces (LIP) and periods of warming, mass extinctions, and biotic disruptions.</p><p>Although the PETM is widely recorded in pelagic and hemipelagic settings, its record in shallow-water and continental successions remains scarce due to frequent hiatuses and unconformities in such environments and a lack of enough biostratigraphic constraints. However, the high sedimentation rate, which may characterize shallow water settings, compared to deeper marine environments, may potentially preserve expanded NCIE successions to better understand the nature and causes of the PETM</p><p>In this study, we present the first synthetic high-resolution mercury and stable isotopic records of three shallow-water and continental successions from highly subsident peripheral basins North (Lussagnet) and South (Serraduy and Esplugrafreda) of the Pyrenean orogen across the PETM. In those sections, our results show two important negative carbon isotope excursions in the bulk-rock carbonates. Based on biostratigraphy and similarity of shape and amplitude of the isotopic excursions with global records, the largest NCIE is interpreted as the NCIE associated with the PETM. This excursion is immediately preceded by another NCIE, second largest in amplitude in our record, and that we interpret as the Pre-Onset Excursion (POE), found in few other profiles worldwide. The occurrence of the POE suggests a first episode of <sup>13</sup>C-depleted carbon release before the onset of the PETM. These various NCIE are associated with important mercury anomalies, even when normalized to total organic content. This suggests that pulses of magmatism, probably associated to the emplacement of the North Atlantic Igneous Province (NAIP), contributed to the onset and to the long duration of the PETM.</p><p>Our work confirms that hyperthermal events of the Palaeogene can be well recorded in shallow water and continental successions and can be used as powerful stratigraphic tools for these depositional environments, in addition to providing information on the climatic perturbations associated with the PETM.</p><p> </p><p>This work is founded and carried out in the framework of the BRGM-TOTAL project Source-to-Sink.</p>


2006 ◽  
Vol 2 (4) ◽  
pp. 371-397 ◽  
Author(s):  
N. Zeng

Abstract. A new mechanism is proposed in which climate, carbon cycle and icesheets interact with each other to produce a feedback that can produce quasi-100 ky glacial-interglacial cycles. A key process is the burial and preservation of organic carbon by icesheets. The switch from glacial maximum to deglaciation is triggered by the ejection of glacial burial carbon when icesheets grow to sufficiently large size and subglacial transport becomes significant. Glacial inception is initiated by CO2 drawdown due to a ''rebound'' from a high but transient interglacial CO2 value as the land-originated CO2 invades into deep ocean via thermohaline circulation and CaCO3 compensation. Also important for glacial inception is the CO2 uptake by vegetation regrowth in the previously ice-covered boreal regions. When tested using a fully coupled Earth system model with comprehensive carbon cycle components and semi-empirical physical climate components, it produced self-sustaining glacial-interglacial cycles of duration about 93 ky, CO2 change of 90 ppmv, temperature change of 6°C under certain parameter regimes. Since the 100 ky cycles can not be easily explained by the weak Milankovitch astronomical forcing alone, this carbon-climate mechanism provides a strong feedback that could interact with external forcings to produce the major observed Quaternary climatic variations.


2021 ◽  
pp. 90-105
Author(s):  
Mark Maslin

‘Climate surprises’ assesses the possibility that there are thresholds or tipping points in the climate system that may occur as we warm the planet. Scientists have been concerned about these tipping points over the last three decades. One can examine the way different parts of the climate system respond to climate change with four scenarios. These include linear but delayed response; muted or limited response; delayed and non-linear response; and threshold response. It is worth considering here the melting of the Greenland and/or Western Antarctic ice sheet; the slowing down of the North Atlantic deep ocean circulation; the potential massive release of methane from melting gas hydrates; and the possibility of the Amazon rainforest dieback.


2019 ◽  
Author(s):  
Jennifer E. Dentith ◽  
Ruza F. Ivanovic ◽  
Lauren J. Gregoire ◽  
Julia C. Tindall ◽  
Laura F. Robinson ◽  
...  

Abstract. Constraining ocean circulation and its temporal variability is crucial for understanding changes in surface climate and the carbon cycle. Radiocarbon (14C) is often used as a geochemical tracer of ocean circulation, but interpreting ∆14C in geological archives is complex. Isotope-enabled models enable us to directly compare simulated ∆14C values to Δ14C measurements and investigate plausible mechanisms for the observed signals. We have added three new tracers (water age, abiotic 14C, and biotic 14C) to the ocean component of the FAMOUS General Circulation Model to study large-scale ocean circulation and the marine carbon cycle. Following a 10 000 year spin-up, we prescribed the Suess effect (the isotopic imprint of anthropogenic fossil fuel burning) and the bomb pulse (the isotopic imprint of thermonuclear weapons testing) in a transient simulation spanning 1765 to 2000 CE. To validate the new isotope scheme, we compare the model output to direct ∆14C observations in the surface ocean (pre-bomb and post-bomb) and at depth (post-bomb only). We also compare the timing, shape and amplitude of the simulated marine bomb spike to ∆14C in geological archives from shallow-to-intermediate water depths across the North Atlantic. The model captures the large-scale structure and range of ∆14C values (both spatially and temporally) suggesting that, on the whole, the uptake and transport of 14C are well represented in FAMOUS. Differences between the simulated and observed values arise due to physical model biases (such as weak surface winds and over-deep North Atlantic Deep Water), demonstrating the potential of the 14C tracer as a sensitive, independent tuning diagnostic. We also examine the importance of the biological pump for deep ocean 14C concentrations and assess the extent to which 14C can be interpreted as a ventilation tracer. Comparing the simulated biotic and abiotic δ14C, we infer that biology has a spatially heterogeneous influence on 14C distributions in the surface ocean (between 18 and 30 ‰), but a near constant influence at depth (≈ 20 ‰). Nevertheless, the decoupling between the simulated water ages and the simulated 14C ages in FAMOUS demonstrates that interpreting proxy ∆14C measurements in terms of ventilation alone could lead to erroneous conclusions about palaeocean circulation. Specifically, our results suggest that ∆14C is only a faithful proxy for water age in regions with strong convection; elsewhere, the temperature dependence of the solubility of CO2 in seawater complicates the signal.


2007 ◽  
Vol 3 (1) ◽  
pp. 135-153 ◽  
Author(s):  
N. Zeng

Abstract. A mechanism is proposed in which climate, carbon cycle and icesheets interact with each other to produce a feedback that can lead to quasi-100 ky glacial-interglacial cycles. A central process is the burial and preservation of organic carbon by icesheets which contributes to the observed glacial-interglacial CO2 change (the glacial burial hypothesis, Zeng, 2003). Allowing carbon cycle to interact with physical climate, here I further hypothesize that deglaciation can be triggered by the ejection of glacial burial carbon when a major icesheet grows to sufficiently large size after a prolonged glaciation so that subglacial transport becomes significant. Glacial inception may be initiated by CO2 drawdown due to a relaxation from a high but transient interglacial CO2 value as the land-originated CO2 invades into deep ocean via thermohaline circulation and CaCO3 compensation. Also important for glacial inception may be the CO2 uptake by vegetation and soil regrowth in the previously ice-covered regions. When tested in a fully coupled Earth system model with comprehensive carbon cycle components and semi-empirical physical climate components, it produced under certain parameter regimes self-sustaining glacial-interglacial cycles with durations of 93 ky, CO2 changes of 90 ppmv, temperature changes of 6°C. Since the 100 ky cycles can not be easily explained by the Milankovitch astronomical forcing alone, this carbon-climate-icesheet mechanism provides a strong feedback that could interact with external forcings to produce the major observed Quaternary climatic variations. It is speculated that some glacial terminations may be triggered by this internal feedback while others by orbital forcing. Some observable consequences are highlighted that may support or falsify the theory.


2011 ◽  
Vol 7 (2) ◽  
pp. 1139-1174 ◽  
Author(s):  
G. R. Dickens

Abstract. Enormous amounts of 13C-depleted carbon rapidly entered the exogenic carbon cycle during the onset of the Paleocene-Eocene thermal maximum (PETM), as attested to by a prominent negative δ13C excursion and widespread seafloor carbonate dissolution. A widely cited explanation for this carbon input has been thermal dissociation of gas hydrate, followed by release of massive CH4 from the seafloor and its subsequent oxidation to CO2 in the ocean or atmosphere. Increasingly, papers have argued against this mechanism, but without fully considering existing ideas and available data. Moreover, other explanations have been presented as plausible alternatives, even though they conflict with geological observations, they raise major conceptual problems, or both. Methane release from gas hydrates remains a congruous explanation for the δ


Sign in / Sign up

Export Citation Format

Share Document