scholarly journals Comment on “Tree-ring based spring precipitation reconstruction in the Sikhote-Alin Mountain Range” by Olga Ukhvatkina et al.

2020 ◽  
Author(s):  
Anonymous
2020 ◽  
Author(s):  
Olga Ukhvatkina ◽  
Alexander Omelko ◽  
Dmitriy Kislov ◽  
Alexander Zhmerenetsky ◽  
Tatyana Epifanova ◽  
...  

2021 ◽  
Vol 17 (2) ◽  
pp. 951-967
Author(s):  
Olga Ukhvatkina ◽  
Alexander Omelko ◽  
Dmitriy Kislov ◽  
Alexander Zhmerenetsky ◽  
Tatyana Epifanova ◽  
...  

Abstract. Climate reconstructions provide important insight into past climate variability and help us to understand the large-scale climate drivers and impact of climate change. However, our knowledge about long-term year-to-year climate variability is still limited due to the lack of high-resolution reconstructions. Here, we present the first precipitation reconstructions based on tree rings from Pinus koraiensis (Korean pine) from three sites placed along a latitudinal (330 km) gradient in the Sikhote-Alin' mountains in the Russian Far East. The tree-ring width chronologies were built using standard tree-ring procedures. We reconstructed the April–June precipitation for the southern Sikhote-Alin' (SSA), March–June precipitation for the central Sikhote-Alin' (CSA) and March–July precipitation for the northwestern Sikhote-Alin' (NSA) over the years 1602 to 2013, 1804 to 2009 and 1858 to 2013, respectively. We found that an important limiting factor for Korean pine growth was precipitation within the period when the air current coming from the continent during the cold period is replaced with the impact of the wet ocean air current. We identified that common wet years for SSA, CSA and NSA occurred in 1805, 1853, 1877, 1903, 1906, 1927, 1983 and 2009 and common dry years occurred in 1821, 1869, 1919, 1949 and 2003. Our reconstructions have 3-, 15- and 60-year periods, which suggests the influence of the El Niño–Southern Oscillation and Pacific Decadal Oscillation on the region's climate and relevant processes. Despite the impact of various global processes, the main contribution to precipitation formation in the study area is still made by the Pacific Ocean, which determines their amount and periodicity.


2020 ◽  
Author(s):  
Olga Ukhvatkina ◽  
Alexander Omelko ◽  
Dmitriy Kislov ◽  
Alexander Zhmerenetsky ◽  
Tatyana Epifanova ◽  
...  

Abstract. Here, we present precipitation reconstructions based on tree rings from Pinus koraiensis (Korean pine) from three sites placed along latitudinal (330 km) gradient in Sikhote-Alin mountains, Russian Far East. The tree-ring width chronologies were built using standard tree-ring procedures. We reconstructed the April–June precipitation for the southern Sikhote-Alin (SSA), March–June precipitation for the central Sikhote-Alin (CSA) and March–July precipitation for the northwestern Sikhote-Alin (NSA) over the 1609 to 2013, 1804 to 2009 and 1858 to 2013, respectively. We found that an important limiting factor for Korean pine growth was precipitation within the period when the air current coming from the continent during the cold period is replaced with the impact of the wet ocean air current. We identified common wet years for SSA, CSA and NSA occurred in 1805, 1853, 1877, 1903, 1906, 1927, 1983, 2009 and common dry years occurred in 1821, 1869, 1919, 1949 and 2003. Our reconstructions have 3, 15 and 60 year periods and corresponds to influence of the El Niño-Southern Oscillation and Pacific Decadal Oscillation on the region's climate and relevant processes, respectively. Despite the impact of various global processes, the main contribution to precipitation formation in study area is still made by the Pacific Ocean, which determines their amount and periodicity.


2017 ◽  
Vol 42 ◽  
pp. 21-30 ◽  
Author(s):  
Narayan Prasad Gaire ◽  
Dinesh Raj Bhuju ◽  
Madan Koirala ◽  
Santosh K. Shah ◽  
Marco Carrer ◽  
...  

2011 ◽  
Vol 45 ◽  
pp. 215-218
Author(s):  
I. F. Skirina ◽  
F. V. Skirin

The work contains new and additional data on distribution of two rare lichen species of the genus Pilophorus, P. cereolus and P. clavatus, in Primorye Territory (Sikhote-Alin mountain range).


2011 ◽  
Vol 24 (13) ◽  
pp. 3457-3468 ◽  
Author(s):  
Keyan Fang ◽  
Xiaohua Gou ◽  
Fahu Chen ◽  
Edward Cook ◽  
Jinbao Li ◽  
...  

Abstract A preliminary study of a point-by-point spatial precipitation reconstruction for northwestern (NW) China is explored, based on a tree-ring network of 132 chronologies. Precipitation variations during the past ~200–400 yr (the common reconstruction period is from 1802 to 1990) are reconstructed for 26 stations in NW China from a nationwide 160-station dataset. The authors introduce a “search spatial correlation contour” method to locate candidate tree-ring predictors for the reconstruction data of a given climate station. Calibration and verification results indicate that most precipitation reconstruction models are acceptable, except for a few reconstructions (stations Hetian, Hami, Jiuquan, and Wuwei) with degraded quality. Additionally, the authors compare four spatial precipitation factors in the instrumental records and reconstructions derived from a rotated principal component analysis (RPCA). The northern and southern Xinjiang factors from the instrumental and reconstructed data agree well with each other. However, differences in spatial patterns between the instrumentation and reconstruction data are also found for the other two factors, which probably result from the relatively poor quality of a few stations. Major drought events documented in previous studies—for example, from the 1920s through the 1930s for the eastern part of NW China—are reconstructed in this study.


1990 ◽  
Vol 20 (10) ◽  
pp. 1559-1569 ◽  
Author(s):  
Christopher H. Baisan ◽  
Thomas W. Swetnam

Modern fire records and fire-scarred remnant material collected from logs, snags, and stumps were used to reconstruct and analyze fire history in the mixed-conifer and pine forest above 2300 m within the Rincon Mountain Wilderness of Saguaro National Monument, Arizona, United States. Cross-dating of the remnant material allowed dating of fire events to the calendar year. Estimates of seasonal occurrence were compiled for larger fires. It was determined that the fire regime was dominated by large scale (> 200 ha), early-season (May–July) surface fires. The mean fire interval over the Mica Mountain study area for the period 1657–1893 was 6.1 years with a range of 1–13 years for larger fires. The mean fire interval for the mixed-conifer forest type (1748–1886) was 9.9 years with a range of 3–19 years. Thirty-five major fire years between 1700 and 1900 were compared with a tree-ring reconstruction of the Palmer drought severity index (PDSI). Mean July PDSI for 2 years prior to fires was higher (wetter) than average, while mean fire year PDSI was near average. This 490-year record of fire occurrence demonstrates the value of high-resolution (annual and seasonal) tree-ring analyses for documenting and interpreting temporal and spatial patterns of past fire regimes.


2021 ◽  
Vol 17 (6) ◽  
pp. 2381-2392
Author(s):  
Maierdang Keyimu ◽  
Zongshan Li ◽  
Bojie Fu ◽  
Guohua Liu ◽  
Fanjiang Zeng ◽  
...  

Abstract. Trees record climatic conditions during their growth, and tree rings serve as proxy to reveal the features of the historical climate of a region. In this study, we collected tree-ring cores of hemlock forest (Tsuga forrestii) from the northwestern Yunnan area of the southeastern Tibetan Plateau (SETP) and created a residual tree-ring width (TRW) chronology. An analysis of the relationship between tree growth and climate revealed that precipitation during the non-growing season (NGS) (from November of the previous year to February of the current year) was the most important constraining factor on the radial tree growth of hemlock forests in this region. In addition, the influence of NGS precipitation on radial tree growth was relatively uniform over time (1956–2005). Accordingly, we reconstructed the NGS precipitation over the period spanning from 1600–2005. The reconstruction accounted for 28.5 % of the actual variance during the common period of 1956–2005. Based on the reconstruction, NGS was extremely dry during the years 1656, 1694, 1703, 1736, 1897, 1907, 1943, 1982 and 1999. In contrast, the NGS was extremely wet during the years 1627, 1638, 1654, 1832, 1834–1835 and 1992. Similar variations of the NGS precipitation reconstruction series and Palmer Drought Severity Index (PDSI) reconstructions of early growing season from surrounding regions indicated the reliability of the present reconstruction. A comparison of the reconstruction with Climate Research Unit (CRU) gridded data revealed that our reconstruction was representative of the NGS precipitation variability of a large region in the SETP. Our study provides the first historical NGS precipitation reconstruction in the SETP which enriches the understanding of the long-term climate variability of this region. The NGS precipitation showed slightly increasing trend during the last decade which might accelerate regional hemlock forest growth.


Atmosphere ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 889
Author(s):  
Zeynab Foroozan ◽  
Jussi Grießinger ◽  
Kambiz Pourtahmasi ◽  
Achim Bräuning

In semi-arid regions of the world, knowledge about the long-term hydroclimate variability is essential to analyze and evaluate the impact of current climate change on ecosystems. We present the first tree-ring δ18O based hydroclimatic reconstruction for northern semi-arid Iran spanning the period 1515–2015. A highly significant correlation between tree-ring δ18O variations of juniper trees and spring (April–June) precipitation reveals a major influence of spring water availability during the early growing season. The driest period of the past 501 years occurred in the 16th century while the 18th century was the wettest, during which the overall highest frequency of wet year events occurred. A gradual decline in spring precipitation is evident from the beginning of the 19th century, pointing to even drier climate conditions. The analysis of dry/wet events indicates that the frequency of years with relatively dry spring increased over the last three centuries, while the number of wet events decreased. Our findings are in accordance with historical Persian disaster records (e.g., the severe droughts of 1870–1872, 1917–1919; severe flooding of 1867, the 1930s, and 1950). Correlation analyses between the reconstruction and different atmospheric circulation indices revealed no significant influence of large-scale drivers on spring precipitation in northern Iran.


Sign in / Sign up

Export Citation Format

Share Document