Tree-ring based spring precipitation reconstruction in western Nepal Himalaya since AD 1840

2017 ◽  
Vol 42 ◽  
pp. 21-30 ◽  
Author(s):  
Narayan Prasad Gaire ◽  
Dinesh Raj Bhuju ◽  
Madan Koirala ◽  
Santosh K. Shah ◽  
Marco Carrer ◽  
...  
2020 ◽  
Author(s):  
Olga Ukhvatkina ◽  
Alexander Omelko ◽  
Dmitriy Kislov ◽  
Alexander Zhmerenetsky ◽  
Tatyana Epifanova ◽  
...  

2011 ◽  
Vol 24 (13) ◽  
pp. 3457-3468 ◽  
Author(s):  
Keyan Fang ◽  
Xiaohua Gou ◽  
Fahu Chen ◽  
Edward Cook ◽  
Jinbao Li ◽  
...  

Abstract A preliminary study of a point-by-point spatial precipitation reconstruction for northwestern (NW) China is explored, based on a tree-ring network of 132 chronologies. Precipitation variations during the past ~200–400 yr (the common reconstruction period is from 1802 to 1990) are reconstructed for 26 stations in NW China from a nationwide 160-station dataset. The authors introduce a “search spatial correlation contour” method to locate candidate tree-ring predictors for the reconstruction data of a given climate station. Calibration and verification results indicate that most precipitation reconstruction models are acceptable, except for a few reconstructions (stations Hetian, Hami, Jiuquan, and Wuwei) with degraded quality. Additionally, the authors compare four spatial precipitation factors in the instrumental records and reconstructions derived from a rotated principal component analysis (RPCA). The northern and southern Xinjiang factors from the instrumental and reconstructed data agree well with each other. However, differences in spatial patterns between the instrumentation and reconstruction data are also found for the other two factors, which probably result from the relatively poor quality of a few stations. Major drought events documented in previous studies—for example, from the 1920s through the 1930s for the eastern part of NW China—are reconstructed in this study.


2021 ◽  
Vol 17 (6) ◽  
pp. 2381-2392
Author(s):  
Maierdang Keyimu ◽  
Zongshan Li ◽  
Bojie Fu ◽  
Guohua Liu ◽  
Fanjiang Zeng ◽  
...  

Abstract. Trees record climatic conditions during their growth, and tree rings serve as proxy to reveal the features of the historical climate of a region. In this study, we collected tree-ring cores of hemlock forest (Tsuga forrestii) from the northwestern Yunnan area of the southeastern Tibetan Plateau (SETP) and created a residual tree-ring width (TRW) chronology. An analysis of the relationship between tree growth and climate revealed that precipitation during the non-growing season (NGS) (from November of the previous year to February of the current year) was the most important constraining factor on the radial tree growth of hemlock forests in this region. In addition, the influence of NGS precipitation on radial tree growth was relatively uniform over time (1956–2005). Accordingly, we reconstructed the NGS precipitation over the period spanning from 1600–2005. The reconstruction accounted for 28.5 % of the actual variance during the common period of 1956–2005. Based on the reconstruction, NGS was extremely dry during the years 1656, 1694, 1703, 1736, 1897, 1907, 1943, 1982 and 1999. In contrast, the NGS was extremely wet during the years 1627, 1638, 1654, 1832, 1834–1835 and 1992. Similar variations of the NGS precipitation reconstruction series and Palmer Drought Severity Index (PDSI) reconstructions of early growing season from surrounding regions indicated the reliability of the present reconstruction. A comparison of the reconstruction with Climate Research Unit (CRU) gridded data revealed that our reconstruction was representative of the NGS precipitation variability of a large region in the SETP. Our study provides the first historical NGS precipitation reconstruction in the SETP which enriches the understanding of the long-term climate variability of this region. The NGS precipitation showed slightly increasing trend during the last decade which might accelerate regional hemlock forest growth.


Atmosphere ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 889
Author(s):  
Zeynab Foroozan ◽  
Jussi Grießinger ◽  
Kambiz Pourtahmasi ◽  
Achim Bräuning

In semi-arid regions of the world, knowledge about the long-term hydroclimate variability is essential to analyze and evaluate the impact of current climate change on ecosystems. We present the first tree-ring δ18O based hydroclimatic reconstruction for northern semi-arid Iran spanning the period 1515–2015. A highly significant correlation between tree-ring δ18O variations of juniper trees and spring (April–June) precipitation reveals a major influence of spring water availability during the early growing season. The driest period of the past 501 years occurred in the 16th century while the 18th century was the wettest, during which the overall highest frequency of wet year events occurred. A gradual decline in spring precipitation is evident from the beginning of the 19th century, pointing to even drier climate conditions. The analysis of dry/wet events indicates that the frequency of years with relatively dry spring increased over the last three centuries, while the number of wet events decreased. Our findings are in accordance with historical Persian disaster records (e.g., the severe droughts of 1870–1872, 1917–1919; severe flooding of 1867, the 1930s, and 1950). Correlation analyses between the reconstruction and different atmospheric circulation indices revealed no significant influence of large-scale drivers on spring precipitation in northern Iran.


The Holocene ◽  
2011 ◽  
Vol 22 (7) ◽  
pp. 809-817 ◽  
Author(s):  
Masaki Sano ◽  
R Ramesh ◽  
MS Sheshshayee ◽  
R Sukumar

A tree-ring δ18O chronology of Abies spectabilis from the Nepal Himalaya was established to study hydroclimate in the summer monsoon season over the past 223 years (ad 1778–2000). Response function analysis with ambient climatic records revealed that tree-ring δ18O was primarily controlled by the amount of precipitation and relative humidity during the monsoon season (June–September). Since tree-ring δ18O was simultaneously correlated with temperature, drought history in the monsoon season was reconstructed by calibrating against the Palmer Drought Severity Index (PDSI). Our reconstruction that accounts for 33.7% of the PDSI variance shows a decreasing trend of precipitation/moisture over the past two centuries, and reduction of monsoon activity can be found across different proxy records from the Himalaya and Tibet. Spatial correlation analysis with global sea surface temperatures suggests that the tropical oceans play a role in modulating hydroclimate in the Nepal Himalaya. Although the dynamic mechanisms of the weakening trend of monsoon intensity still remain to be analyzed, rising sea surface temperatures over the tropical Pacific and Indian Ocean could be responsible for the reduction of summer monsoon.


2016 ◽  
Vol 23 (2) ◽  
pp. 14-19 ◽  
Author(s):  
U K Thapa ◽  
S K Shah ◽  
N P Gaire ◽  
D R Bhuju ◽  
A. Bhattacharyya ◽  
...  

 This study aims to understand the influence of climate on radial growth of Abies pindrow growing in the plateau of mixed forest in Khaptad National Park in Western Nepal Himalaya. Based on the dated tree-ring samples, 362-year long tree-ring width chronology was developed dating back to 1650. The studied taxa of this region was found to have dendroclimatic potentiality that was evident from the chronology statistics calculated. The tree-ring chronology was correlated with climate (temperature and precipitation) data to derive the tree-growth climate relationship. The result showed significant negative relationship with March-May temperature and positive relationship with March-May precipitation. This indicates that the availability of moisture is the primary factor in limiting the tree growth.Banko Janakari, Vol. 23, No. 2, 2013


2020 ◽  
Author(s):  
Valerie Trouet ◽  
Tom De Mil ◽  
Matthew Meko ◽  
Jan Van den Bulcke

<p>High-resolution annual precipitation and temperature proxies are largely lacking in Southern Africa, partly due to the scarcely available tree species that are suitable for dendrochronology. Clanwilliam cedar (Widdringtonia cedarbergensis) from Cape Province, South Africa, is a long-lived conifer with distinct tree rings and thus a strong dendroclimatic potential. However, the climatic signal in its tree-ring width (TRW) is weak and other tree-ring parameters such as density need to be explored to extract climatic information from this proxy. Here we investigate the climatic signal of density parameters in 17 Clanwilliam cedar samples (9 trees) collected in 1978 (Dunwiddie & LaMarche, 1980). We use a non-destructive X-ray Computed Tomography facility to develop minimum density (MIND) and maximum density (MXD) chronologies from 1900 until 1977. EPS for both density series exceeded 0.85. For the period 1930-1977 (reliable instrumental records), MIND correlates negatively with early-growing season precipitation (Oct-Nov), whereas MXD correlates negatively with end-of-season (March) temperature. The spatial correlation between MIND and spring precipitation spans the winter rainfall zone of South Africa. Clanwilliam cedar can live to be 356 years old and the current TRW chronology extends to 1564 CE. Full-length density chronologies for this long-lived species could provide a precipitation reconstruction for southern Africa, a region where historical climate observations are limited and where societal vulnerability to future climate change is high.</p><p>References:</p><p>Dunwiddie, P. W., & LaMarche, V. C. (1980). A climatically responsive tree-ring record from Widdringtonia cedarbergensis, Cape Province, South Africa. Nature, 286(5775), 796–797.</p>


1996 ◽  
Vol 26 (12) ◽  
pp. 2123-2133 ◽  
Author(s):  
Dana L. Perkins ◽  
Thomas W. Swetnam

Whitebark pine (Pinusalbicaulis Engelm.) tree-ring chronologies of 700 to greater than 1000 years in length were developed for four sites in the Sawtooth–Salmon River region, central Idaho. These ring-width chronologies were used to (i) assess the dendrochronological characteristics of this species, (ii) detect annual mortality dates of whitebark pine attributed to a widespread mountain pine beetle (Dendroctonusponderosae Hopkins (Coleoptera: Scolytidae)) epidemic during the 1909–1940 period, and (iii) establish the response of whitebark pine ring-width growth to climate variables. Cross-dating of whitebark pine tree-ring patterns was verified. Ring-width indices had low mean sensitivity (0.123–0.174), typical of high-elevation conifers in western North America, and variable first-order autocorrelation (0.206–0.551). Mountain pine beetle caused mortality of dominant whitebark pine peaked in 1930 on all four sites. Response functions and correlation analyses with state divisional weather records indicate that above-average radial growth is positively correlated with winter and spring precipitation and inversely correlated with May temperature. These correlations appear to be a response to seasonal snowpack. Whitebark pine is a promising species for dendroclimatic studies.


Sign in / Sign up

Export Citation Format

Share Document